An die Nitrobakterien schließen sich die Schwefelbakterien an, die Schwefelwasserstoff zu Schwefelsäure oxydieren, wobei sie intermediär Schwefel bilden und als Reservestoff in ihrem Körper speichern. In ähnlicher Weise gewinnen andere Bakterien bei der Oxydation von Methan zu Kohlensäure und Wasser die nötige Betriebsenergie. Daß diese überall in erster Linie zur Synthese organischer Substanz aus CO 2 dient, ist sehr wahrscheinlich.

Im Gegensatz zu diesen streng spezialisierten, autotrophen Bakterien ist die Verbrennung von Wasserstoff nicht die Eigenschaft ganz bestimmter „Wasserstoffbakterien“, sondern sie wird weit verbreitet von gewöhnlichen, typisch heterotrophen Bakterien ausgeübt, die daneben auch die Verbrennung organischer Substanz vollziehen. Offenbar ist es bei den sog. Eisenbakterien (z. B. Leptothrix ochracea) ähnlich, die vielleicht Eisen und Mangan nur dann wirklich nötig haben, wenn ihnen wenig geeignete organische Substanzen geboten werden.

C. Gärungen[199].

Mit der Entziehung des Sauerstoffes tritt intramolekulare Atmung ein; diese vermag zwar nicht bei höheren Pflanzen, wohl aber bei niederen die zur dauernden Erhaltung des Lebens nötige freie Energie zu liefern. Viele Bakterien, Pilze, auch gewisse Algen (Characeen) sind in auffallender Weise unabhängig vom Sauerstoff, sie nehmen mit geringen Spuren von ihm vorlieb, oder sie fliehen ihn überhaupt gänzlich und leben an sauerstoffreien Orten. Im Gegensatz zu dem verbreitetsten Typus von Organismen, die man aërobe oder Aërobionten nennt, heißen sie anaërobe oder Anaërobionten. Die beiden Extreme sind durch allerlei Abstufungen verbunden. Die echten Anaërobionten zersetzen organische Substanzen in sehr großen Mengen, und diese Zersetzung, die im Prinzip mit den Vorgängen bei der intramolekularen Atmung identisch ist, nennt man Gärung. Wie dort, so handelt es sich auch hier um Gewinnung gebundenen Sauerstoffs.

Das Prototyp der Gärung ist die alkoholische Gärung, die ganz besonders von Hefepilzen verursacht wird. Hier wird Zucker in Alkohol und Kohlensäure zerspalten, und dieser Vorgang hat bekanntlich eine große Bedeutung in der Technik ( Bier -, Wein -, Branntweinbereitung ). Der chemische Prozeß selbst ist der gleiche wie in der grünen Pflanze, die intramolekular atmet; im Gegensatz zu dieser aber vermag die Hefe in der Gärung einen vollen Ersatz für die Atmungstätigkeit zu finden. Sie ist aber nur so lange unabhängig vom Sauerstoff, als ihr ein geeignetes Gärmaterial (Zucker) zur Verfügung steht. Fehlt Zucker, so ist der Sauerstoff unentbehrlich, und es findet dann normale Atmung statt; ist Zucker und Sauerstoff gegeben, so tritt gleichzeitig Atmung und Gärung ein, es wird also ein Teil des Zuckers zu Kohlensäure und Alkohol, ein anderer zu Kohlensäure und Wasser verarbeitet. Es leuchtet ein, daß die Verarbeitung von Zucker zu Alkohol und Kohlensäure viel weniger Energie liefert als die vollständige Verbrennung zu Kohlensäure und Wasser. Deshalb versteht man es, daß die Hefe ungeheure Massen von Zucker verbraucht. Nur etwa 2% Zucker in der Nährlösung wird zum Aufbau von Körpersubstanz verbraucht (assimiliert), der Rest wird vergoren. Zur Ausführung einer so weitgehenden Spaltung des Zuckers besitzt die Hefe spezifische Enzyme, vor allem die Zymase.

Wenn bei der normalen Atmung die gesamte Verbrennungswärme der Glykose = 709 cal frei wird, so ist davon bei der Alkoholgärung die Verbrennungswärme von 2 Molekülen Alkohol 2 × 326 = 652 cal abzuziehen: somit werden nur 57 statt 709 cal frei.

Daß die chemische Tätigkeit der Hefe auf der Wirkung von Enzymen beruht[200], hat man schon lange vermutet. Erst E. BUCHNER aber gelang es, diese vom lebenden Plasma zu trennen. Da die „ Zymase “ im Gegensatz zu anderen Enzymen nicht aus der Zelle herauszudiffundieren vermag, mußte sie nach Aufreißen der Zellen durch hohen Druck aus diesen herausgepreßt werden. Die Zymase ist übrigens kein einheitliches Enzym, sondern ein Gemisch vieler Enzyme, die zusammen schließlich zur Alkoholbildung führen.

Im einzelnen dürfte nach NEUBERG[201] dieser Prozeß etwa so verlaufen, daß zunächst das Zuckermolekül in 2 Moleküle Methylglyoxal übergeführt wird, die Brenztraubensäure liefern; diese wird durch CO 2 -Abspaltung in Acetaldehyd übergeführt. Acetaldehyd aber läßt sich als Zwischenprodukt der Gärung nachweisen und wird seinerseits auch direkt von der Hefe zu Alkohol reduziert.

Wenn auch die Hefe durch ihr Gärvermögen weitgehend unabhängig vom Sauerstoff ist, so kann man sie doch nicht zu den streng anaëroben Organismen rechnen, da sie in ihrem Wachstum durch freien Sauerstoff stark gefördert wird. Dementsprechend wird, da der chemische Umsatz von der Zahl der Hefezellen abhängt, mit der Zeit mehr Alkohol bei Sauerstoffzutritt als ohne solchen gebildet werden können. Andere Gärungsorganismen werden aber von freiem Sauerstoff direkt geschädigt und leben dementsprechend in der Natur nur an Orten, wo solcher fehlt. Zu diesen echten Anaërobionten gehören vor allem die Buttersäurebakterien, die Kohlehydrate aller Art, höhere Alkohole und Salze der Milchsäure in Wasserstoff und organische Säuren überführen, unter denen die Buttersäure nie fehlt. Sie spielen, da sie auch die sonst so schwer angreifbare Zellulose lösen, eine sehr große Rolle in der Natur: sie führen den von den Pflanzen in ihren Membranen festgelegten Kohlenstoff wieder in eine Form über, die eine weitere Verwendung durch andere Organismen gestattet, sie verhindern also ein Ausscheiden großer Mengen Kohlenstoffs aus dem Kreislauf der Stoffe (S. 240 ).

Auch bei der Buttersäuregärung soll das Kohlehydrat zunächst in Brenztraubensäure übergeführt werden, aus der dann durch eine Umlagerung Buttersäure neben freiem Wasserstoff auftritt. Indem für letzteren der freie Stickstoff als „Akzeptor“ fungiert, soll es zur Bildung von Ammoniak, also zur Stickstoffbindung kommen; vgl. 224[195].