Man kennt phobische und topische Reaktionen bei der Phototaxis. Manche Organismen können sowohl phobisch als topisch reagieren, andere zeigen nur eine dieser Reaktionsweisen. — Phobotaktisch reagieren vor allem gewisse Bakterien, die auf den Übergang von Licht zu Dunkelheit mit einer Rückwärtsbewegung antworten. An einer stark beleuchteten Stelle werden sie dadurch gefangen, daß sie jedesmal, wenn sie durch ihre Bewegungen ins Dunkle geführt werden, zurückprallen ( Lichtfalle ). — Die topotaktischen Organismen stellen vor allem ihre Längsachse in die Lichtrichtung ein, um sich dann nach der Lichtquelle hin zu bewegen, wenn sie positiv reagieren, oder von ihr wegzuschwimmen, wenn sie negativ phototaktisch sind. Fallen Lichtstrahlen verschiedener Richtung gleichzeitig auf solche Organismen ein, so bewegen sie sich in der Resultierenden. Dieses „Resultantengesetz“ gilt nicht nur in Beziehung auf die Richtung, sondern auch in Beziehung auf die Intensität.

Im Experiment kann man Bedingungen herstellen (konvergentes Licht), die z. B. negativ topotaktische Schwärmer zwingen, indem sie sich von der Lichtquelle entfernen, in immer hellere Zonen zu eilen. In der Natur aber führen zweifellos die phototaktischen Bewegungen die Organismen an Orte optimaler Helligkeit.

Sehr auffallende Phototaxis besitzen die Chlorophyllkörner[252], deren Bewegungsmechanismus freilich noch ganz unbekannt ist. Diese Bewegungen bringen das Chlorophyllkorn in eine derartige Lage, daß es eine optimale Lichtmenge aufnehmen kann. Diese Lage wird bald durch Drehungen an Ort und Stelle, bald durch Wanderung an andere Stellen erreicht.

In den zylindrischen Zellen der Alge Mesocarpus befindet sich ein einziger Chloroplast, der die Gestalt einer rechteckigen Platte hat. Licht niedriger Intensität sucht er möglichst auszunutzen, indem er sich senkrecht zu der Richtung der Strahlen stellt (Flächenstellung); bei höherer Lichtintensität dreht sich die Platte um ihre Längsachse und bildet einen spitzen Winkel mit den Strahlen oder wendet ihnen schließlich gar die schmale Kante zu (Profilstellung), nimmt dann also sehr wenig Licht auf.

In den Blättern der Moose und der höheren Pflanzen sowie in den Prothallien der Farne wird eine Stellungsänderung der zahlreichen Chlorophyllkörner durch Verschiebung auf den Wänden der Zelle erreicht. In gemäßigtem Lichte werden die Chlorophyllkörner an denjenigen Wänden verteilt, die quer die Richtung der Lichtstrahlen schneiden (Fig. 274 T ); sie gleiten aber alsbald an die den Lichtstrahlen parallel laufenden Seitenwände und werden der Lichtwirkung damit möglichst entzogen, wenn das Licht anfängt, zu stark zu werden (Fig. 274 S ). Im Finstern oder bei sehr schwachem Licht kann eine dritte, aus derFig. 274 N ersichtliche Art der Gruppierung eintreten, deren Ursache und Bedeutung hier nicht erörtert werden kann.

Fig. 274. Wechselnde Stellung der Chlorophyllkörner in den Zellen der untergetauchten Wasserlinse (Lemna trisulca) bei verschiedener Beleuchtung. T In diffusem Tageslicht. S In direktem Sonnenlicht. N Des Nachts. Die Pfeile geben die Richtung des einfallenden Lichtes an. Nach STAHL.

Die Chlorophyllkörner erfahren zudem bei Beleuchtungswechsel Formveränderungen; in gemäßigtem Lichte sind sie abgeflacht, in zu starkem und zu schwachem Lichte werden sie dicker und entsprechend kleiner. — Durch die Änderungen in der Anordnung der Chlorophyllkörner erscheint die Farbe grüner Organe in wechselnder Abtönung. In starker Besonnung sehen sie meist heller, in zerstreutem Licht dunkler grün aus.

2. Chemotaxis[253].

Eine Chemotaxis kommt, wie bemerkt, durch ungleiche Verteilung von im Wasser gelösten Stoffen zustande. Positive Chemotaxis führt zu einer Ansammlung der reizbaren Pflanze in der höheren Konzentration des Chemotaktikums.

Als Chemotaktikum funktionieren nicht beliebige, sondern ganz bestimmte Substanzen. So werden z. B. viele Bakterien von gewissen Nährstoffen, anorganischen wie organischen, z. B. Pepton, Zucker, Fleischextrakt, Phosphaten usf., „ angelockt “; andere Stoffe, vor allem Säuren, Alkalien, „stoßen sie ab“. Steht hier die Chemotaxis im Dienste des Nahrungserwerbes, so sehen wir sie bei den Spermien eine ganz andere Bedeutung gewinnen; diese männlichen Sexualzellen finden durch chemotaktische Anlockung die Eizellen.Fig. 356 zeigt die chemotaktische Anlockung der Spermien durch die weibliche Sexualzelle bei Ectocarpus. Auch Zellkerne und Chloroplasten können chemotaktische Bewegungen ausführen.