Mit konzentrierten Lösungen von Gerbstoffen[29] gefüllte, stark lichtbrechende und unter Umständen sehr große Vakuolen sind im Plasma vieler Zellen, besonders Rindenzellen, vorhanden; auch Alkaloide, Glykoside (vgl.S. 12 ) und den Glykosiden verwandte Bitterstoffe sind nicht selten im Zellsafte gelöst. Das alles sind meist Endprodukte des Stoffwechsels.
Als Gerbstoffe werden Gemische sehr verschiedenartig zusammengesetzter aromatischer Verbindungen bezeichnet, die oft Glykoside sind. Besonders verbreitet bei den Pflanzen kommen in glykosidischer Bindung die Gallussäure, die Gallusgerbsäure (Digallussäure oder Tannin) und die Ellagsäure vor. Die dunkelblaue oder grüne Färbung mit Ferrichlorid- oder Ferrisulfatlösung, der rotbraune Niederschlag mit wäßriger Kaliumbichromatlösung gelten im allgemeinen als Gerbstoffreaktionen. Freilich reagieren auch einige andere Stoffe so. Die Gerbstoffe werden in den Pflanzen meist nicht weiter verarbeitet. Infolge ihrer fäulniswidrigen Eigenschaften dienen sie öfters zur Imprägnierung von Zellhäuten, die länger ausdauern sollen.
Vielfach ist der Zellsaft gefärbt, besonders durch Anthozyane, eine Gruppe stickstoffreier Glykoside. Sie sind rot in sauren, blau in schwach alkalischen Zellsäften; unter Umständen sind sie auch dunkelrot, violett (so in neutralem Zellsaft), dunkelblau, selbst schwarzblau gefärbt. Alkalien wandeln die Farbe oft in grün um. Bei einer sehr großen Anzahl intensiv gefärbter Pflanzen sind die Anthozyane auch kristallinisch oder amorph ausgeschieden. Seltener findet man, im Zellsaft gelöst, auch gelbe Farbstoffe, die Anthochlore[30], z. B. in den Zellen der gelben Blütenblätter der Primeln, des gelben Fingerhutes, der Löwenmäulchen, der Königskerze; oder auch ein braunes Pigment, das Anthophaein, z. B. in den Zellen der schwarzbraunen Flecken in den Saubohnenblüten.
Einsicht in die chemische Konstitution der Anthozyane verdankt man vor allem den Untersuchungen von WILLSTÄTTER und seinen Schülern[31]. Danach sind es meist Glykoside, in denen an Zucker aromatische Farbstoffkomponenten, die Zyanidine, gebunden sind, z. B. bei der Kornblumenblüte das Zyanidin (C 15 H 10 O 6 ), bei der Blüte des Rittersporns das Delphinidin (C 15 H 10 O 7 ). Die Zyanidine, die auch frei in Zellsäften vorkommen können, sind Hydroxylverbindungen eines Phenylbenzopyryliums; sie sind den Flavonen verwandt, die in Pflanzen sehr weit verbreitet sind. In roten Blüten sind die Zyanidine an Säuren gebunden, in blauen an Alkalien; in violetten sind es neutrale Farbstoffe. Auch die Anthochlore sind Glykoside mit aromatischen Farbstoffkomponenten, die zu den Flavonen gehören, oder solche freien Flavone[30].
„ Blutfarbige “, d. h. braune Laubblätter, z. B. die der Blutbuchen, Bluthaselnüsse u. a., verdanken ihre eigenartige Färbung dem Zusammenwirken von rotem Anthozyan und grünen Chlorophyllkörnern. Auch die Rötung der Laubblätter im Herbste beruht auf Anthozyanbildung.
Bei den Blüten und Früchten kommen die verschiedenen Farben, die im allgemeinen der Anlockung von Tieren dienen und deshalb als Lockfarben bezeichnet werden, durch die Farben der Zellsäfte, die Verteilung der farbstoffhaltigen Zellen, durch Chromoplasten, endlich auch oft durch die Kombination der gelösten Farbstoffe mit gelben, gelbroten oder roten Chromoplasten und grünen Chloroplasten zustande.
b) Fettvakuolen. Als Reservestoffe sind die Fette (fetten Öle) im Pflanzenreiche so verbreitet, daß ungefähr neun Zehntel aller Phanerogamen sie im Plasma ihrer Samen und zwar als feinste, optisch nicht nachweisbare Emulsion speichern. In besonders fettreichen Samen macht das Öl bis zu 70% der Trockensubstanz aus. Fette können aber auch als stark lichtbrechende Tröpfchen (Fettvakuolen) im Plasma auftreten, so z. B. in den keimenden Samen. Die Fette sind Gemische vieler Glyzerinester von Fettsäuren, besonders der Palmitinsäure (C 16 H 32 O 2 ), der Stearinsäure (C 18 H 36 O 2 ), der Ölsäure (C 18 H 34 O 2 ) u. a. Mit diesen Reservestoffen wird der Raum der Speicherorgane am besten ausgenutzt, da das Fett einen besonders großen Energievorrat gegenüber anderen Speicherstoffen hat.
c) Vakuolen mit ätherischen Ölen und Harzen[32]. Auch sie bilden stark lichtbrechende Tröpfchen; z. B. im Zellinhalt zahlreicher Blumenblätter, in Rhizomen verschiedener Pflanzen (Acorus calamus, Zingiber officinale), in Rinden (Cinnamomum), in Blättern (Laurus nobilis), endlich in Fruchtschalen und Samen (Piper nigrum, Illicium anisatum). Die Wände solcher Zellen sind nicht selten verkorkt. Die ätherischen Öle sind vor allem Gemische von Terpenen (C 10 H 16 ) 1 bis n und Terpenderivaten nebst gewissen Estern, Phenolen, Phenolderivaten und höheren Alkoholen; die Harze sind Gemische von Terpenen und Harzsäuren, die durch Oxydation aus den Terpenen entstehen. Ätherische Öle und Harze haben fäulniswidrige Eigenschaften. Die ätherischen Öle der Blüten locken durch ihren Duft die bestäubenden Insekten an. Unter Umständen nimmt das Öl auch Kristallform an, z. B. in den Blumenblättern der Rose.
2. Feste Einschlüsse des Plasmas. a) Kristalle von Kalziumoxalat, Ca(CO 2 ) 2 mit zwei oder sechs Mol. Kristallwasser, kommen in sehr vielen Pflanzen vor. Sie werden, als Endprodukte des Stoffwechsels, wohl meist im Zytoplasma (oder seltener im Zellsafte kleinerer oder größerer Vakuolen) angelegt, liegen später aber sehr oft im Zellsaftraum und nehmen unter Umständen schließlich fast die ganze Zelle ein. In letzterem Falle sind die übrigen Bestandteile der Zelle sehr reduziert, die Zellwände nicht selten verkorkt. Es bilden sich entweder große Einzelkristalle (Fig. 132 k, 173 Bk, 182 k ), deren Formen leicht zu erkennen sind, oder viele winzige Kriställchen, die so zahlreich sein können, daß sie als Kristallsand die Zelle anfüllen, oder viele, Rhaphiden genannte Kristallnadeln, die parallel nebeneinander liegen und in der Zelle Rhaphidenbündel bilden (Fig. 22 ), oder schließlich morgensternförmige Kristalldrusen (Fig. 132 k′, 184 k ). Bei jeder Pflanzenart herrschen bestimmte Kristallformen vor.
Die großen Einzelkristalle gehören dem tetragonalen oder dem monosymmetrischen Kristallsystem an. Im ersteren Fall enthalten sie 6 Mol., im letzteren 2 Mol. Kristallwasser. Der Konzentrationsgrad der Lauge, aus der die Kristalle entstehen, soll es oft bedingen, ob sie sich nach dem einen oder nach dem anderen System bilden. Besonders häufig begegnet man den morgensternförmigen Kristalldrusen, aus vielen Kristallen zusammengesetzt, die von einem organischen Kern ausstrahlen. Bei monokotylen Gewächsen, doch auch bei zahlreichen Dikotylen, sind die nadelförmigen, monoklinen Rhaphiden verbreitet (Fig. 22 ). Ein solches Bündel ist stets in eine große, mit Schleim gefüllte Vakuole eingeschlossen. Die Oxalatkristalle sind ohne Aufbrausen löslich in Salzsäure, aber unlöslich in Essigsäure.