Nur bei den niederen mehrzelligen Pflanzen besteht das Zellgewebe des Körpers aus lauter ziemlich gleichartigen kugelförmigen, polyëdrischen oder zylindrischen Zellen (vgl. z. B.Fig. 84 ), die sämtlich in fast gleicher Weise allen Lebensfunktionen dienen. Man kann diese Gewebe Parenchym nennen. In dem Maße, wie mit fortschreitender äußerer Organisation und mit Zunahme der Größe des Organismus die Arbeitsteilung zwischen den Protoplasten zunimmt, erhalten Zellen einzeln oder gruppenweise verschiedene Form, verschiedenen Bau und besondere Aufgaben. So entsteht namentlich bei den höheren Pflanzen eine Sonderung der gleichartigen Zellen in eine Anzahl verschieden gebauter Zellarten, zwischen denen es aber immer Übergänge gibt. Untersucht man vergleichend die verschiedensten Organe einer Pflanze und aller höher organisierten Pflanzen miteinander, so findet man, daß die Zahl dieser verschiedenen Zellarten klein ist und daß bestimmte Zellformen überall wiederkehren.
Meist sind gleichartige Zellen zu Gruppen verbunden. Einen solchen Verband aus lauter gleichartigen Zellen nennt man eine Gewebeart. Die Gewebearten unterscheiden sich durch die Formen, den Inhalt und den Membranbau der Zellelemente, aus denen sie bestehen; eine jede Gewebeart hat ihre besonderen Aufgaben, die in einer Hauptfunktion oder in mehreren Funktionen bestehen können. Je höher die Pflanze organisiert ist, um so mehr Gewebearten setzen ihren Körper zusammen. Doch ist entsprechend den Zellarten auch die Zahl der Gewebearten klein, da sie in gleicher Weise bei den verschiedensten Gewächsen immer wieder auftreten. Nicht selten kommt es vor, daß in ein Gewebe aus sonst gleichartigen Zellen einzelne Zellen (wohl auch Idioblasten genannt) oder Zellgruppen mit ganz abweichendem Bau und Inhalt eingeschaltet sind, die also einer anderen Zellart angehören.
Bei den höheren Pflanzen bilden ferner einzelne Gewebearten größere Gewebemassen, die auf weite Strecken oder durch den ganzen Pflanzenkörper in ununterbrochenem Zusammenhange stehen. Man nennt solche Verbände, die oft auch aus verschiedenartigen Gewebearten zusammengesetzt sind, morphologische Gewebesysteme. Auch derartige zusammengesetzte Gewebeverbände können durch ihre Baueigentümlichkeiten sehr auffallen und bestimmte Hauptfunktionen haben; und zwar pflegen die verschiedenen Gewebearten einander in ihren Funktionen zu ergänzen oder zu unterstützen.
Zu einem physiologischen Gewebesysteme endlich faßt man alle Zellen zusammen, die in ihren Hauptfunktionen übereinstimmen, gleichgültig ob und wie sie morphologisch verbunden und woraus sie ontogenetisch entstanden sind. Solche Systeme sind also etwas ganz anderes als die morphologischen Gewebesysteme.
Wir können sämtliche Gewebearten der höher organisierten Pflanzen in zwei Hauptgruppen teilen, nämlich 1. in die embryonalen oder Bildungsgewebe und 2. in die fertigen oder Dauergewebe.
A. Die Bildungsgewebe.
Sie werden auch Meristeme genannt. Sie bestehen aus verhältnismäßig kleinen, nach allen Richtungen ungefähr gleich großen, also isodiametrischen, würfelförmigen oder aus prismatischen, plattenförmigen oder langgestreckten, embryonalen Zellen mit dünnen Zellmembranen, reichlichem Plasma, großen Zellkernen und wenigen kleinen Vakuolen (vgl.Fig. 2 ). Bezeichnend für sie sind meist die zahlreichen Zellteilungen, die man in ihnen, wenigstens so lange sie tätig sind, findet. Diese Bildungsgewebe, aus denen die Dauergewebe hervorgehen, zerfallen nach den Orten ihres Vorkommens und der Art ihrer Entstehung in Urmeristeme und sekundäre Meristeme.
1. Urmeristeme. Sie entstehen durch die Teilung der Keimzelle und setzen zunächst den Embryo allein zusammen. Später sind sie hauptsächlich an den Spitzen der Zweige und Wurzeln, an den Vegetationspunkten dieser Organe (Fig. 102,154 ) vorhanden. Hier findet alsdann die Vermehrung der embryonalen Zellen und die Anlage vieler Seitenorgane statt ( apikales oder Spitzenwachstum).
Eine oder einige dieser Meristemzellen an der äußersten Spitze des Vegetationspunktes bleiben dauernd embryonal und vermehren durch Wachstum und darauffolgende Zellteilungen fortgesetzt die Zellen des Meristems, während die embryonalen Zellen, die durch diese Teilungen entstanden sind, sich meist nach weiteren Teilungen allmählich in Dauerzellen umwandeln. Ist eine solche Spitzenzelle vorhanden (Fig. 100,101,153 ), die alsdann meist durch Form und besondere Größe von den übrigen Meristemzellen abweicht, so spricht man von einer Scheitelzelle, sind mehrere in einer oder mehreren Schichten (Fig. 102,154 ) vorhanden, von Initialzellen. Diese sind meist von den übrigen Meristemzellen der Form nach nicht zu unterscheiden; bei manchen Pflanzen ähneln sie jedoch mehr oder weniger den Scheitelzellen.
Dicht hinter dem Vegetationspunkte beginnen die annähernd gleichartigen, lückenlos verbundenen Urmeristemzellen verschieden zu wachsen und sich in Stränge und Schichten verschiedenartig gestalteter Bildungszellen zu sondern, die aber sonst zunächst die Eigenschaften der embryonalen Zellen noch behalten (Fig. 100,102,154 ). Schon hier treten Interzellularen auf. Erst in größerer Entfernung vom Vegetationspunkte bilden sich allmählich die Merkmale der verschiedenen Dauergewebe aus, basalwärts fortschreitend in immer stärkerem Maße, bis der fertige Zustand schließlich erreicht ist. Bei dieser Gewebedifferenzierung kommt es sehr häufig vor, daß Gruppen, Stränge oder Schichten von Zellen ihre meristematische Beschaffenheit beibehalten und zu Ausgangspunkten für weitere Neubildungen von embryonalen und fertigen Geweben werden. In vielen Fällen stellen sie vorübergehend eine Zeitlang ihre Teilungstätigkeit ein.