Die Quantität ist Quantum, oder hat eine Grenze; sowohl als kontinuirliche wie als diskrete Größe. Der Unterschied dieser Arten hat hier zunächst keine Bedeutung.

Die Quantität ist als das aufgehobene Fürsichseyn schon an und für sich selbst gegen ihre Grenze gleichgültig. Aber damit ist ihr ebenso die Grenze, oder ein Quantum zu seyn, nicht gleichgültig; denn sie enthält das Eins, das absolute Bestimmtseyn, in sich als ihr eigenes Moment, das also als gesetzt an ihrer Kontinuität oder Einheit ihre Grenze ist, die aber als Eins, zu dein sie überhaupt geworden, bleibt.

Dieß Eins ist also das Princip des Quantums, aber das Eins als der Quantität. Dadurch ist es erstlich kontinuirlich, es ist Einheit; zweitens ist es diskret, an sich seyende (wie in der kontinuirlichen) oder gesetzte (wie in der diskreten Größe) Vielheit der Eins, welche die Gleichheit miteinander, jene Kontinuität, dieselbe Einheit haben. Drittens ist die ß Eins auch Negation der vielen Eins als einfache Grenze, ein Ausschließen seines Andersseyns aus sich, eine Bestimmung seiner gegen andere Quanta. Das Eins ist insofern sich à) auf sich beziehende, (ß) umschließende, und (ç) Anderes ausschließende Grenze.

Das Quantum in diesen Bestimmungen vollständig gesetzt, ist die Zahl. Das vollständige Gesetztseyn liegt in dem Daseyn der Grenze als Vielheit und damit ihrem Unterschiedenseyn von der Einheit. Die Zahl erscheint, deswegen als diskrete Größe, aber sie hat an der Einheit ebenso die Kontinuität. Sie ist darum auch das Quantum in vollkommener Bestimmtheit; indem in ihr die Grenze als bestimmte Vielheit, die das Eins, das schlechthin bestimmte, zu seinem Principe hat. Die Kontinuität, als in der das Eins nur an sich, als Aufgehobenes ist,—gesetzt als Einheit,—ist die Form der Unbestimmtheit.

Das Quantum nur als solches ist begrenzt überhaupt, seine Grenze ist abstrakte, einfache Bestimmtheit desselben. Indem es aber Zahl ist, ist diese Grenze als in sich selbst mannigfaltig gesetzt. Sie enthält die vielen Eins, die ihr Daseyn ausmachen, enthält sie aber nicht auf unbestimmte Weise, sondern die Bestimmtheit der Grenze fällt in sie; die Grenze schließt anderes Daseyn, d. i. andere Viele aus, und die von ihr umschlossenen Eins sind eine bestimmte Menge, —die Anzahl, zu welcher als der Diskretion, wie sie in der Zahl ist, das andere die Einheit, die Kontinuität derselben, ist. Anzahl und Einheit machen die Momente der Zahl aus.

Von der Anzahl ist noch näher zu sehen, wie die vielen Eins, aus denen sie besteht, in der Grenze sind; von der Anzahl ist der Ausdruck richtig, daß sie aus den Vielen besteht, denn die Eins sind in ihr nicht als aufgehoben, sondern sind in ihr, nur mit der ausschließenden Grenze gesetzt, gegen welche sie gleichgültig sind. Aber diese ist es nicht gegen sie. Beim Daseyn hatte sich zunächst das Verhältniß der Grenze zu demselben so gestellt, daß das Daseyn als das affirmative diesseits seiner Grenze bestehen blieb, und diese, die Negation, außerhalb an seinem Rande sich befand; ebenso erscheint an den vielen Eins das Abbrechen derselben und das Ausschließen anderer Eins als eine Bestimmung, die außerhalb der umschlossenen Eins fällt. Aber es hat sich dort ergeben, daß die Grenze das Daseyn durchdringt, soweit geht als dieses, und daß Etwas dadurch seiner Bestimmung nach begrenzt, d. i. endlich ist.—So stellt man im Quantitativen der Zahl etwa Hundert so vor, daß das hundertste Eins allein die Vielen so begrenze, daß sie Hundert seyen. Einer Seits ist dieß richtig; anderer Seits aber hat unter den hundert Eins keines einen Vorzug, da sie nur gleich sind; jedes ist ebenso das Hundertste; sie gehören also alle der Grenze an, wodurch die Zahl Hundert ist; diese kann für ihre Bestimmtheit keines entbehren; die anderen machen somit gegen das hundertste Eins kein Daseyn aus, das außerhalb der Grenze oder nur innerhalb ihrer, überhaupt verschieden von ihr wäre. Die Anzahl ist daher nicht eine Vielheit gegen das umschließende, begrenzende Eins, sondern macht selbst diese Begrenzung aus, welche ein bestimmtes Quantum ist; die Vielen machen eine Zahl, Ein Zwei, Ein Zehn, Ein Hundert u.s.f. aus.

Das begrenzende Eins ist nun das Bestimmtseyn gegen Anderes, Unterscheidung der Zahl von andern. Aber diese Unterscheidung wird nicht qualitative Bestimmtheit, sondern bleibt quantitativ, fällt nur in die vergleichende äußerliche Reflexion; die Zahl bleibt als Eins in sich zurückgekehrt, und gleichgültig gegen Andere. Diese Gleichgültigkeit der Zahl gegen Andere ist wesentliche Bestimmung derselben; sie macht ihr An-sich-bestimmtseyn, aber zugleich ihre eigene Äußerlichkeit aus.—Sie ist so ein numerisches Eins, als das absolut bestimmte, das zugleich die Form der einfachen Unmittelbarkeit hat, und dem daher die Beziehung auf anderes völlig äußerlich ist. Als Eins, das Zahl ist, hat es ferner die Bestimmtheit, insofern sie Beziehung auf Anderes ist, als seine Momente in ihm selbst, in seinem Unterschiede der Einheit und der Anzahl, und die Anzahl ist selbst Vielheit der Eins d. i. es ist in ihm selbst diese absolute Äußerlichkeit.—Dieser Widerspruch der Zahl oder des Quantums überhaupt in sich ist die Qualität des Quantums, in deren weitern Bestimmungen sich dieser Widerspruch entwickelt.

Anmerkung 1.

Die Raumgröße und Zahlgröße pflegen so als zwei Arten betrachtet zu werden, daß die Raumgröße für sich so sehr bestimmte Größe als die Zahlgröße wäre; ihr Unterschied bestünde nur in den verschiedenen Bestimmungen der Kontinuität und Diskretion; als Quantum aber stünden sie auf derselben Stufe. Die Geometrie hat im Allgemeinen in der Raumgröße die kontinuirliche, und die Arithmetik in der Zahlgröße die diskrete Größe zum Gegenstande. Aber mit dieser Ungleichheit des Gegenstandes haben sie auch nicht eine gleiche Weise und Vollkommenheit der Begrenzung oder des Bestimmtseyns. Die Raumgröße hat nur die Begrenzung überhaupt; insofern sie als ein schlechthin bestimmtes Quantum betrachtet werden soll, hat sie die Zahl nöthig. Die Geometrie als solche mißt die Raumfiguren nicht, ist nicht Meßkunst; sondern vergleicht sie nur. Auch bei ihren Definitionen sind die Bestimmungen zum Theil von der Gleichheit der Seiten, Winkel, der gleichen Entfernung hergenommen. So bedarf der Kreis, weil er allein auf die Gleichheit der Entfernung aller in ihm möglichen Punkte von einem Mittelpunkte beruht, zu seiner Bestimmung keiner Zahl. Diese auf Gleichheit oder Ungleichheit beruhenden Bestimmungen sind ächt geometrisch. Aber sie reichen nicht aus, und zu andern z. B. Dreieck, Viereck, ist die Zahl erforderlich, die in ihrem Princip, dem Eins das Für-sich-bestimmtseyn, nicht das Bestimmtseyn durch Hülfe eines Andern, also nicht durch Vergleichung enthält. Die Raumgröße hat zwar an dem Punkte die dem Eins entsprechende Bestimmtheit; der Punkt aber wird, insofern er außer sich kommt, ein Anderes, er wird zur Linie; weil er wesentlich nur als Eins des Raumes ist, wird er in der Beziehung, zu einer Kontinuität, in der die Punktualität, das Für-sich-Bestimmtseyn, das Eins, aufgehoben ist. Insofern das Für-sich-Bestimmtseyn im Außersichseyn sich erhalten soll, muß die Linie als eine Menge von Eins vorgestellt werden, und die Grenze, die Bestimmung der vielen Eins, in sich bekommen, d. h. die Größe der Linie—eben so der anderen Raum-Bestimmungen—muß als Zahl genommen werden.

Die Arithmetik betrachtet die Zahl und deren Figuren, oder vielmehr betrachtet sie nicht, sondern operirt mit denselben. Denn die Zahl ist die gleichgültige Bestimmtheit, träge; sie muß von außen bethätigt und in Beziehung gebracht werden. Die Beziehungsweisen sind die Rechnungsarten. Sie werden in der Arithmetik nach einander aufgeführt, und es erhellt, daß eine von der andern abhängt. Der Faden, der ihren Fortgang leitet, wird jedoch in der Arithmetik nicht herausgehoben.