Das beide Unterscheidende liegt näher sogleich darin, daß in der unendlichen Reihe das Negative außerhalb ihrer Glieder ist, welche Gegenwart haben, indem sie nur als Theile der Anzahl gelten. In dem endlichen Ausdrucke dagegen, der ein Verhältniß ist, ist das Negative immanent, als das Bestimmtseyn der Seiten des Verhältnisses durcheinander, welches ein in sich Zurückgekehrtseyn, sich auf sich beziehende Einheit, als Negation der Negation (beide Seiten des Verhältnisses sind nur als Momente), ist, hiermit die Bestimmung der Unendlichkeit in sich hat.—Zu der That ist also die gewöhnlich sogenannte Summe, das 2/7 oder 1/1-a', ein Verhältniß; und dieser sogenannte endliche Ausdruck ist der wahrhaft unendliche Ausdruck. Die unendliche Reihe dagegen ist in Wahrheit Summe; ihr Zweck ist, das was an sich Verhältniß ist, in der Form einer Summe darzustellen, und die vorhandenen Glieder der Reihe sind nicht als Glieder eines Verhältnisses, sondern eines Aggregats. Sie ist ferner vielmehr der endliche Ausdruck; denn sie ist das unvollkommene Aggregat, und bleibt wesentlich ein Mangelhaftes. Sie ist nach dem, was in ihr da ist, ein bestimmtes Quantum, zugleich aber ein geringeres, als sie seyn soll; alsdann auch das, was ihr fehlt, ist ein bestimmtes Quantum; dieser fehlende Theil ist in der That das, was das Unendliche an der Reihe heißt, nach der nur formellen Seite, daß er ein Fehlendes, ein Nichtseyn ist; nach seinem Inhalte ist er ein endliches Quantum. Das was in der Reihe da ist, zusammen mit dem was ihr fehlt, macht erst das aus, was der Bruch ist, das bestimmte Quantum, das sie gleichfalls seyn soll, aber zu seyn nicht vermag. —Das Wort: Unendlich, pflegt, auch in der unendlichen Reihe, in der Meinung etwas Hohes und Hehres zu seyn; es ist dieß eine Art von Aberglauben, der Aberglaube des Verstands; man hat gesehen, wie es sich vielmehr auf die Bestimmung der Mangelhaftigkeit reducirt.

Daß es, kann noch bemerkt werden, unendliche Reihen giebt, die nicht summirbar sind, ist in Bezug auf die Form von Reihe überhaupt ein äußerlicher und zufälliger Umstand. Sie enthalten eine höhere Art der Unendlichkeit, als die summirbaren; nämlich eine Incommensurabilität, oder die Unmöglichkeit, das darin enthaltene quantitative Verhältniß als ein Quantum, sey es auch als Bruch, darzustellen; die Form der Reihe aber als solche, die sie haben, enthält dieselbe Bestimmung der schlechten Unendlichkeit, welche in der summirbaren Reihe ist.

Die so eben am Bruche und an seiner Reihe bemerkte Verkehrung in Ansehung des Ausdrucks findet auch Statt, insofern das mathematische Unendliche nämlich nicht das so eben genannte sondern das wahrhafte, das relative Unendliche,—das gewöhnliche metaphysische dagegen, worunter das abstrakte, schlechte Unendliche verstanden wird, das absolute genannt worden ist. In der That ist vielmehr dieses metaphysische nur das relative, weil die Negation, die es ausdrückt, nur so im Gegensatze einer Grenze ist, daß diese außer ihm bestehen bleibt, und von ihm nicht aufgehoben wird; das mathematische Unendliche hingegen hat die endliche Grenze wahrhaft in sich aufgehoben, weil das Jenseits derselben mit ihr vereinigt ist.

In dem Sinne, in welchem aufgezeigt worden, daß die sogenannte Summe oder der endliche Ausdruck einer unendlichen Reihe, vielmehr als der unendliche anzusehen ist, ist es vornehmlich, daß Spinoza den Begriff der wahren Unendlichkeit gegen den der schlechten aufstellt und durch Beispiele erläutert. Sein Begriff gewinnt am neisten Licht, indem ich das, was er hierüber sagt, an diese Entwickelung anschließe.

Er definirt zunächst das Unendliche als die absolute Affirmation der Existenz irgend einer Natur, das Endliche im Gegentheil als Bestimmtheit, als Verneinung. Die absolute Affirmation einer Existenz ist nämlich als ihre Beziehung auf sich selbst zu nehmen, nicht dadurch zu seyn, daß ein Anderes ist; das Endliche hingegen ist die Verneinung, ein Aufhören als Beziehung auf ein Anderes, das außer ihm anfängt. Die absolute Affirmation einer Existenz erschöpft nun zwar den Begriff der Unendlichkeit nicht; dieser enthält, daß die Unendlichkeit Affirmation ist, nicht als unmittelbare, sondern nur als wiederhergestellte durch die Reflexion des Anderen in sich selbst, oder als Negation des Negativen. Aber bei Spinoza hat die Substanz und deren absolute Einheit die Form von unbewegter d. i. nicht sich mit sich selbst vermittelnder Einheit, von einer Starrheit, worin der Begriff der negativen Einheit des Selbst, die Subjektivität, sich noch nicht findet.

Das mathematische Beispiel, womit er das wahre Unendliche (Epist. XXIX.) erläutert, ist ein Raum zwischen zwei ungleichen Kreisen, deren einer innerhalb des andern, ohne ihn zu berühren, fällt, und die nicht koncentrisch sind. Er machte, wie es scheint, sich viel aus dieser Figur und dem Begriffe als deren Beispiel er sie gebrauchte, daß er sie zum Motto seiner Ethik machte.—"Die Mathematiker, sagt er, schließen, daß die Ungleichheiten, die in einem solchen Raume möglich sind, unendlich sind, nicht aus der unendlichen Menge der Theile, denn seine Größe ist bestimmt und begrenzt, und ich kann größere und kleinere solche Räume setzen, sondern weil die Natur der Sache jede Bestimmtheit übertrift."—Man sieht, Spinoza verwirftjene Vorstellung vom Unendlichen, nach welcher es als Menge oder als Reihe vorgestellt wird, die nicht vollendet ist, und erinnert, daß hier an dem Raume des Beispiels das Unendliche nichtjenseits, sondern gegenwärtig und vollständig ist; dieser Raum ist ein Begrenztes, aber darum ein Unendliches, "weil die Natur der Sache jede Bestimmtheit übersteigt," weil die darin enthaltene Größenbestimmung zugleich nicht als ein Quantum darstellbar ist, oder nach obigem kantischen Ausdruck das Synthesiren nicht zu einem—diskreten—Quantum vollendet werden kann.—Wie überhaupt der Gegensatz von kontinuirlichem und diskretem Quantum auf das Unendliche führt, soll in einer spätern Anmerkung auseinander gesetzt werden.—Jenes Unendliche einer Reihe nennt Spinoza das Unendliche der Imagination; das Unendliche hingegen als Beziehung auf sich selbst, das Unendliche des Denkens oder infinitum actu. Es ist nämlich actu, es ist wirklich unendlich, weil es in sich vollendet und gegenwärtig ist. So ist die Reihe, 0,285714… oder 1 + a + a[hoch 2] + a[hoch 3]… das Unendliche bloß der Einbildung oder des Meinens; denn es hat keine Wirklichkeit, es fehlt ihm schlechthin etwas; hingegen 2/7 oder 1/1-a ist das wirklich, nicht nur was die Reihe in ihren vorhandenen Gliedern ist, sondern noch das dazu, was ihr mangelt, was sie nur seyn soll. Das 2/7 oder 1/1-a ist gleichfalls eine endliche Größe, wie der zwischen den zwei Kreisen eingeschlossene Raum Spinoza's und dessen Ungleichheiten; und kann wie dieser Raum größer oder kleiner gemacht werden. Aber es kommt damit nicht die Ungereimtheit eines größern oder kleinern Unendlichen heraus; denn dieß Quantum des Ganzen, geht das Verhältniß seiner Momente, die Natur der Sache d. h. die qualitative Größenbestimmung, nichts an; das was in der unendlichen Reihe da ist, ist ebenso ein endliches Quantum, aber außerdem noch ein Mangelhaftes.—Die Einbildung dagegen bleibt beim Quantum als solchem stehen, und reflektirt nicht auf die qualitative Beziehung, welche den Grund der vorhandenen Inkommensurabilität ausmacht.

Die Inkommensurabilität, welche in dem Beispiel Spinoza's liegt, schließt überhaupt die Funktionen krummer Linien in sich, und führt näher auf das Unendliche, das die Mathematik bei solchen Funktionen, überhaupt bei den Funktionen veränderlicher Größen eingeführt hat, und welches das wahrhafte mathematische, quantitative Unendliche ist, das auch Spinoza sich dachte. Diese Bestimmung soll nun hier näher erörtert werden.

Was vors erste die für so wichtig geltende Kategorie der Veränderlichkeit betrifft, unter welche die in jenen Funktionen bezogenen Größen gefaßt werden, so sollen sie zunächst veränderlich nicht in dem Sinne seyn, wie im Bruche 2/7 die beiden Zahlen 2 und 7, indem eben so sehr 4 und 14, 6 und 21 und so fort ins Unendliche andere Zahlen an ihre Stelle gesetzt werden können, ohne den im Bruche gesetzten Werth zu ändern. So kann noch mehr in a/b an die Stelle von a und b jede beliebige Zahl gesetzt werden, ohne das zu ändern was a/b ausdrücken soll. In dem Sinne nur, daß auch an die Stelle von x und y einer Funktion eine unendliche d. h. unerschöpfliche Menge von Zahlen gesetzt werden könne, sind a und b so sehr veränderliche Größe als jene, x und y. Der Ausdruck: veränderliche Größen, ist darum sehr vage, und unglücklich gewählt für Größebestimmungen, die ihr Interesse und Behandlungsart in etwas in etwas ganz Anderem liegen haben, als in ihrer bloßen Veränderlichkeit.

Um es deutlich zu machen, worin die wahrhafte Bestimmung der Momente einer Funktion liegt, mit denen sich das Interesse der höhern Analysis beschäftigt, müssen wir die bemerklich gemachten Stufen noch einmal durchlaufen. In 2/7 oder a/b sind 2 und 7 jedes für sich, bestimmte Quanta und die Beziehung ist ihnen nicht wesentlich; a und b soll gleichfalls solche Quanta vorstellen, die auch außer dem Verhältnisse bleiben, was sie sind. Ferner ist auch 2/7 und a/b ein fixes Quantum, ein Quotient; das Verhältniß macht eine Anzahl aus, deren Einheit der Nenner, und die Anzahl dieser Einheiten der Zähler—oder umgekehrt ausdrückt; wenn auch 4 und 14 u.s.f. an die Stelle von 2 und 7 treten, bleibt das Verhältniß auch als Quantum dasselbe. Dieß verändert sich nun aber wesentlich in der Funktion y[hoch 2]/x = p z.B.; hier haben x und y zwar den Sinn, bestimmte Quanta seyn zu können; aber nicht x und y, sondern nur x und y[hoch 2] haben einen bestimmten Quotienten.

Dadurch sind diese Seiten des Verhältnisses, x und y, erstens nicht nur keine bestimmten Quanta, sondern zweitens ihr Verhältniß ist nicht ein fixes Quantum, (noch ist dabei ein solches wie bei a und b gemeint), nicht ein fester Quotient, sondern er ist als Quantum schlechthin veränderlich. Dieß aber ist allein darin enthalten, daß x nicht zu y ein Verhältniß hat, sondern zum Quadrate von y. Das Verhältniß einer Größe zur Potenz ist nicht ein Quantum, sondern wesentlich qualitatives Verhältniß; das Potenzenverhältniß ist der Umstand, der als Grundbestimmung anzusehen ist.—In der Function der geraden Linie y = a x aber, ist x/y = a ein gewöhnlicher Bruch und Quotient; diese Funktion ist daher nur formell eine Funktion von veränderlichen Größen, oder x und y sind hier was a und b in a/b, sie sind nicht in derjenigen Bestimmung, in welcher die Differential- und Integralrechnung sie betrachtet.—Wegen der besondern Natur der veränderlichen Größen in dieser Betrachtungsweise, wäre es zweckmäßig gewesen, für sie sowohl einen besonderen Namen, als andere Bezeichnungen einzuführen, als die gewöhnlichen der unbekannten Größen in jeder endlichen, bestimmten oder unbestimmten Gleichung; um ihrer wesentlichen Verschiedenheit willen von solchen bloß unbekannten Größen, die an sich vollkommen bestimmte Quanta, oder ein bestimmter Umfang von bestimmten Quantis sind.—Es ist auch nur der Mangel des Bewußtseyns, über die Eigenthümlichkeit dessen, was das Interesse der höheren Analysis ausmacht und das Bedürfniß und die Erfindung des Differential-Kalkuls herbeigeführt hat, daß Funktionen des ersten Grades wie die Gleichung der geraden Linie in die Behandlung dieses Kalkuls für sich mit hereingenommen werden; seinen Antheil an solchem Formalismus hat ferner der Mißverstand, der die an sich richtige Forderung der Verallgemeinerung einer Methode dadurch zu erfüllen meint, daß die specifische Bestimmtheit, auf