Fig. 39.
[§ 47.] Ein Beispiel, wie die Richtung verkürzter schräger Parallellinien ohne Hilfe ihres Fluchtpunkts berechnet werden kann, ist auch in [Fig. 31] enthalten, wo, um den Punkt F zu finden, B r und C r gezogen und in r eine Senkrechte errichtet wurde, welche auf der von E ausgehenden Wagrechten den Punkt F und hiemit die mit D E parallele Richtung der Linie G F ergibt. Auf dieselbe Weise kann in [Fig. 40], wenn das Dreieck A B D und die Wagrechte A C gegeben sind, die Richtung der mit A D parallelen Linie C E berechnet werden, indem man von C eine mit A B, von d und D zwei mit A C parallele Linien zieht und in e eine Senkrechte errichtet. Ebenso kann F n gefunden werden durch die Linien F m und m n.
Fig. 40.
In [Fig. 38] kann von p aus eine Linie parallel mit A B gezeichnet werden mittels der Linien k x, p x und einer in x errichteten Senkrechten. Oder kann man in A und p 2 Senkrechte errichten, B b parallel mit A C, b o parallel mit A p ziehen und hierauf durch eine weitere mit A C parallele Linie von o aus den Punkt n bestimmen.
Soll von D aus abwärts eine mit A B parallele Linie gezeichnet werden, so kann durch die Verlängerung von A B, A C und D E ein Dreieck A c d gebildet und d h = c d gemacht werden, wodurch D h parallel mit B A ist. Oder kann, nachdem das Dreieck A B b gezeichnet ist, D a = A b gemacht und von a eine mit A C und b B parallele Linie bis zu der Senkrechten B k gezogen werden, wodurch e D parallel mit A B ist und von D aus verlängert werden kann. Es könnte ferner, wenn F z geometrisch = y z ist, durch den Halbierungspunkt von D z eine Linie von i nach der verlängerten y z gezogen werden.
[§ 48.] In [Fig. 41] sei A G a und A o gegeben. Um die Richtung der parallel mit A a von B, i und o ausgehenden Linien zu berechnen, ist durch den Halbierungspunkt der Senkrechten n a eine mit A G parallele Linie nach f und von hier aus f g als wagrechte Mittellinie des Daches gezogen, welche nun ähnlich wie die Mittellinien in [Fig. 31] benüzt werden kann, um zwischen A B und a p beliebige mit A a parallele Linien z. B. B b, i k und o p zu zeichnen: man zieht a B und A r b, b i und B s k u. s. w. Die Richtung der Linie C c ist auf die in [§ 45] [Fig. 38] angegebene Weise berechnet: d h ist = n a gemacht und von h eine Linie durch C nach der verlängerten m z gezogen. Der Punkt F ergibt sich durch eine parallel mit A G von E nach der Verlängerung von b B gezogenen Linie; eine Senkrechte von F abwärts schneidet die von c nach rechts gehende Wagrechte in e, womit E e gegeben ist.
Fig. 41.