Eine senkrechte und eine wagrechte Linie, oder 2 schräge Linien, welche in demselben Grade gegen einander geneigt sind, wie eine senkrechte und eine wagrechte, bilden einen rechten Winkel, vgl. [Fig. 2] A B und A C, e f und c d. Werden die Schenkel eines rechten Winkels über die Spize hinaus verlängert, so entstehen 4 rechte Winkel (z. B. bei A). Zwei Linien, welche weniger gegen einander geneigt sind, als die Schenkel eines rechten Winkels, bilden einen stumpfen solche, die stärker gegen einander geneigt sind, einen spizen Winkel. Ein stumpfer Winkel (a b und c b, [Fig. 2]) ist also grösser, ein spizer Winkel (b c und c d) ist kleiner, als ein rechter.

Dreiecke.

Fig. 3.

[§ 3.] A, B, C, D, E [Fig. 3] sind verschiedene Arten von Dreiecken: A, ein gleichseitiges Dreieck, hat 3 gleich lange Seiten, welche in den Ecken 3 gleich grosse spize Winkel bilden; B, C und E sind gleichschenklige Dreiecke, in welchen 2 Seiten gleich lang sind, während die dritte entweder länger oder kürzer ist, als jene beiden; leztere heisst die Grundlinie. D und E sind rechtwinklige Dreiecke, d. h. einer der 3 Winkel ist ein rechter; E ist also ein gleichschenkliges rechtwinkliges Dreieck: der Winkel bei a ist ein rechter, a b und a c sind gleich lang; die Winkel bei b und c sind halbe rechte Winkel; durch eine Linie von a nach d, der Mitte von b c, entstehen 2 rechtwinklige gleichschenklige Dreiecke: a d c und a d b.

Vierecke.

[§ 4.] [Fig. 4] ist ein Quadrat, d. h. ein Viereck mit 4 gleich langen Seiten, welche in den Ecken 4 rechte Winkel bilden; in einem Rechteck oder Oblongum ([Fig. 5]) stossen die Seiten gleichfalls in rechten Winkeln zusammen, aber das eine Seitenpaar ist länger, als das andere. [Fig. 6] ist eine Raute oder ein Rhombus: die 4 Seiten sind gleich lang und die gegenüberliegenden sind parallel, wie im Quadrat, aber sie bilden in den Ecken nicht rechte, sondern 2 spize und 2 stumpfe Winkel.

Fig. 4.