Verteilung der Sonnenflecke:
1. Kurz vor dem Minimum. 2. Kurz nach dem Minimum. 3. Vor dem Maximum. 4. Im Maximum. 5. Nach dem Maximum.

Für uns wandern die Flecke ziemlich schnell über die Sonne hin, weil diese sich in etwa 25½ Tagen einmal um sich selbst dreht. Die genaue Ermittlung dieser Rotationszeit ist Schwierigkeiten unterworfen, weil die Flecke, deren Bewegung man zu diesem Zwecke beobachten muß, immer starke Eigenbewegungen haben, die nur von den sturmartigen Vorgängen, unter denen sie offenbar entstehen, abhängen. Es können deshalb verschiedene Flecke einer Gruppe auch verschieden schnell über die Sonnenscheibe hinziehen, ja es ist die Regel, daß sich eine Gruppe in der Richtung der Rotationsbewegung, also in einem Parallel, auseinanderzieht. Dabei findet nun aber meist eine Abweichung in dem Sinne statt, daß auf der nördlichen Halbkugel die Flecke mehr nach Nordosten, auf der südlichen dagegen nach Südosten gedrängt werden. Dies ist besonders interessant, weil es dem auch auf der Erde für die Zyklone geltenden Rotationsgesetze entspricht. Die Erscheinung rührt daher, daß die Umdrehungsgeschwindigkeit einer Kugel vom Äquator, wo sie am größten ist, bis zu den ruhenden Polen abnimmt. In höhere Breiten übergehende Luftströmungen kommen daher dort mit einer Geschwindigkeit an, die größer ist, als die in jenen Regionen normal herrschende; der Widerstand, den ihre ursprüngliche Geschwindigkeit hier findet, wird dadurch die Veranlassung zu einer in dem angegebenen Sinne umbiegenden Wirbelbewegung.

Diese Verhältnisse machten es schwer, die Eigenbewegung der Flecke von der wirklichen Rotationszeit zu trennen, und eine Reihe von Beobachtern kam deshalb zu dem Schlusse, die normale Umdrehungszeit der Sonnenoberfläche nehme regelmäßig vom Äquator zu den Polen ab. Dabei ist die Rotationszeit von der Rotationsgeschwindigkeit wohl zu unterscheiden; erstere muß natürlich bei einem festen Körper überall dieselbe sein. Für die Sonne dagegen schien sie vom Äquator bis zur Grenze der Fleckenzonen von 25 auf 28 Tage abzunehmen. Beruht dies auch vielleicht auf Irrtum, so scheint doch die eigentliche Äquatorzone der oberen Sonnenatmosphäre in der Tat den übrigen Teilen beständig vorauszueilen. Man hat gemeint, daß die Ursache davon vielleicht das einstmalige Herabstürzen eines Nebelringes gewesen sei, der vordem die Sonne umgab. In einem andern Bändchen dieser Sammlung, das sich mit der Frage eines möglichen Weltunterganges beschäftigt,[3] habe ich die Auflösung und Wiedervereinigung von Planeten mit ihrem Zentralkörper entsprechend geschildert. Ein Planet, der sich durch die allgemeinen Widerstände im Weltraume seiner Sonne zu sehr nähert, wird von ihr in einzelne Teile zerbröckelt, die sich über seine Bahn zu einem Ringe ausbreiten. Durch die Hitze des Sonnenkörpers werden die Bröckelchen in Gasform aufgelöst, und als Nebelring vereinigt sich der Planet endlich wieder mit seinem Mutterkörper. Nach den allgemeinen Gesetzen der Planetenbewegungen mußte solch ein Ring schneller umlaufen, als die Sonne gegenwärtig sich um sich selbst dreht. Sein Aufsturz würde also die Äquatorgegenden in der Tat beschleunigen. Alles dies sind natürlich rein hypothetische Kombinationen.

Ganz denselben Gesetzmäßigkeiten, wie wir sie hier an den Flecken wahrgenommen haben, begegnen wir nun auch bei den Fackeln, jenen hellsten Stellen der Sonnenoberfläche, die meist die Flecke umgeben, aber sehr häufig auch selbständig auftreten. Das Gebiet der Sonnenoberfläche, das von den Fackeln eingenommen wird, ist im allgemeinen bedeutend größer als das von Flecken besetzte, und diese Fackeln sind auch beständiger als die Flecke. Wolfer hat Fackelgruppen nicht so selten beobachtet, die während mehr als acht Umdrehungsperioden wiederkehrten, indem sie nur jene Eigenbewegungen ausführten, wie sie schon bei den Flecken beschrieben wurden. Sonnenflecke sieht man nur in seltenen Fällen während drei oder vier Rotationsperioden wiederkehren, freilich bestand in einem einzelnen Falle auch einmal ein Fleck 18 Monate lang. Die Fackeln sind gleich den Flecken innerhalb derselben Zone am häufigsten; auch sie kommen in den Polargegenden nicht vor. Sie zeigen ebenfalls die elfjährige Periode. Dies alles beweist, daß beide Erscheinungen auf das engste zusammengehören. Dennoch können Fackeln durch mehrere Rotationsperioden bestehen, ohne daß sich aus ihnen ein Fleck entwickelt. Man sieht Flecke über Fackeln scheinbar ohne Zusammenhang mit ihnen ausgestreut. Wir wollen uns hier zunächst darauf beschränken, die Tatsachen der Beobachtung anzuführen. Die ursächlichen Beziehungen können wir erst ins Auge fassen, wenn wir alle hierher gehörigen Erscheinungen überblicken.

Ähnliches wie von den Flecken und Fackeln gilt auch von den Protuberanzen, doch mit einer wesentlichen Einschränkung. Die spektroskopische Untersuchung, auf deren Resultate über die Sonne wir noch im besonderen zurückkommen, hat gezeigt, daß es zwei sehr verschiedene Arten von Protuberanzen gibt, von denen die einen in der Hauptsache nur Wasserstoff und Helium enthalten, die andern aber Metalldämpfe, aus denen die Photosphäre der Sonne besteht. In jenen werden also die Stoffe emporgeschleudert, welche die höheren Schichten der Sonnenhülle, die Chromosphäre, bilden, die andern stehen in Beziehung zu der tieferen Photosphäre.

Protuberanzen am Sonnenrande.
Die Sonne selbst ist durch den Mond verfinstert.

Die sehr zahlreichen Wasserstoff-Protuberanzen zeigen keinen hervorstechenden Zusammenhang mit den Flecken und Fackeln. Man beobachtet sie am ganzen Sonnenrande bis zu den Polen hin, wenngleich ihre Ausdehnung und Größe doch auch an die Regionen der allgemeinen größeren Sonnentätigkeit gebunden ist. Dagegen stehen die metallischen Protuberanzen in deutlicher Beziehung zu den Fackeln und Flecken. Wolfer teilt mit, daß von »315 metallischen Protuberanzen, die in 39 Rotationsperioden beobachtet waren, 274, d. h. fast 90%, in Fleckengruppen oder doch deren nächster Nähe lagen, 27 oder 10% in Fackelgruppen, die keine Flecke enthielten, und nur 14 oder etwa 5% erschienen gänzlich unabhängig von Flecken- und Fackelbildungen.« Wir dürfen also wohl annehmen, daß die Wasserstoff-Protuberanzen zunächst ihr Entstehen nur Vorgängen verdanken, die sich innerhalb der Chromosphäre abspielen, während die metallischen Protuberanzen ihre Ursache mit den Flecken und Fackeln zugleich im Innern der Sonne haben.

Über der Chromosphäre breitet sich die Korona, die trotz vieler vergeblichen Versuche, sie unter gewöhnlichen Umständen beobachten zu können, sich unsern Blicken nur in den wenigen Minuten einer totalen Finsternis enthüllt. Ihr Wesen ist deshalb noch immer recht geheimnisvoll geblieben. Sie besteht aus breiten Strahlenbüscheln, die sich oft um mehr als einen Sonnendurchmesser in den Raum erstrecken, aber nicht immer geradlinig, sondern namentlich um die Pole herum in eigentümlich gesetzmäßiger Weise gekrümmt. Die kräftigsten Ausläufer gehen auch bei diesem Phänomen wieder von den Gegenden der größten Sonnentätigkeit aus, aber feinere Strahlen umgeben auch die Pole selbst. Die Anordnung der Strahlen entspricht genau sogenannten magnetischen Kraftlinien, wie sie zum Beispiel durch Eisenstäbchen um einen Magnetpol markiert werden. Auch unsere Erde besitzt gewissermaßen Koronastrahlen, die Polarlichter, die ihre Strahlen in ganz entsprechender Weise verteilen. Wir werden weiterhin sehen, daß ein innerer Zusammenhang zwischen beiden Erscheinungen, jener solaren und dieser irdischen, existiert. In neuerer Zeit ist eine Beziehung zwischen der wechselnden Form der Korona und der Fleckenperiode nachgewiesen worden. Zur Zeit des Minimums gehen die Koronastrahlen mehr von der Äquatorgegend aus, während an den Polen jene Kraftlinien nicht auftreten; diese erscheinen erst bei erhöhter Sonnentätigkeit, wobei die Äquatorstrahlen dann geringer werden. Wir sehen hieraus deutlich, wie die elektrische Ladung der Sonne sich steigert bei jenen ungeheuren Stürmen, die die Flecke erzeugen. Nach diesem Fleckenausbruch, der wie eine alle elf Jahre wiederkehrende Krankheit die Sonne befällt, entspannen sich wieder die elektrischen Kräfte, und die von ihnen erzeugte eigentümliche Gruppierung der Koronastrahlen verliert sich. Daß auch die Korona in unmittelbarem Zusammenhange mit den Flecken steht, zeigte sich in ganz augenfälliger Weise während der totalen Finsternis vom 18. Mai 1901. Man sah damals von einer bestimmten Stelle des verfinsterten Sonnenrandes ein weit ausgedehntes Strahlenbüschel, an dessen Basis sich eine Protuberanz befand, und am folgenden Tage tauchte in dieser selben Gegend ein von Fackeln umgebener Sonnenfleck auf, der zur Zeit der Finsternis genau an der Stelle gestanden haben muß, wo man diese Strahlen ausbrechen sah. Wenn ich hier aber von Strahlen rede, so ist der Ausdruck nicht ganz bezeichnend, denn ihre Struktur ist nicht völlig gradlinig, man erkennt, daß es sich hier um Materie handelt, die nur ungefähr durch eine ausstrahlende Kraft so geordnet wird, etwa wie bei einer Explosion.

Die Korona ist also wirklich etwas Materielles. Man muß dies besonders betonen, weil sie bei andern Gelegenheiten sich als ganz wesenlos zu erweisen schien. Man hat nämlich Kometen beobachtet, die mitten durch die Korona mit ungeheurer Geschwindigkeit hindurchsausten, ohne, wie man bisher annahm, die mindeste Hemmung in ihrem Lauf zu erfahren. So durchraste zum Beispiel der große Komet von 1843 in weniger als drei Stunden einen Weg von mindestens 5 Millionen Kilometern innerhalb der Korona, mit einer maximalen Geschwindigkeit von 570 Kilometern in der Sekunde; er kam dabei der Sonnenoberfläche bis auf 3 Minuten nahe, das ist also nur der zehnte Teil des ganzen Sonnendurchmessers. Ähnliches geschah bei den Kometen von 1880 und 1882. Alle entwickelten dabei eine enorme Helligkeit, die mit der Sonne selbst wetteiferte: Sie waren am Tage dicht neben dem strahlenden Gestirne sichtbar, und der Komet von 1882 verschwand, als er vor die Sonne trat; er hatte also genau die gleiche Helligkeit wie sie. Nun wissen wir von den Sternschnuppen, die in die höchsten Schichten unserer Atmosphäre mit einer Geschwindigkeit von rund 50 Kilometern eindringen, daß sie darin völlig in ihrem Laufe durch den Widerstand der äußerst dünnen Luft aufgehalten werden und durch die dabei entwickelte Hitze in Dampf aufgehen. Aus der Bewegung der Kometen in der Korona aber glaubte man schließen zu können, daß sie dort überhaupt keinen Widerstand fänden. In neuester Zeit sind indes Zweifel darüber aufgekommen, ob die in jenen Fällen vorliegenden Beobachtungen zu diesem Schlusse berechtigen. Die ungemeine und ganz plötzliche Erhitzung dieser Weltkörper bei ihrem Eindringen in die oberste Sonnenhülle aber scheint doch ein augenfälliger Beweis für den Widerstand zu sein, der einen Teil der Bewegung in Wärme umsetzt; denn die bloße Bestrahlung durch die Sonne kann ein so schnelles Anwachsen der Helligkeit nicht erklären, das durchaus von der Art des plötzlichen Aufleuchtens der Sternschnuppen in unserer Atmosphäre ist. Der Komet von 1882 zeigte auch noch eine andere Erscheinung, die er mit den Meteoriten teilt: Er zersprang in mehrere Stücke beim Durchdringen der Korona. Außerdem entwickelten die Kometen hierbei Eisendämpfe; auch von ihren festeren Teilen geht also dann etwas in Dampfform auf. Wir müssen die Korona nach allen diesen Umständen als eine oberste Sonnenatmosphäre ansehen und können nun der Frage nähertreten, aus welcher Materie sie und überhaupt die ganze Sonne zusammengesetzt ist.