Aus diesen Versuchen geht hervor, daß bei einem Anwachsen der Schichtdicke von 0,1 mm bis zu 6 mm das Durchdringungsvermögen der Strahlung dauernd zunimmt. Ich fand unter gleichen Versuchsbedingungen, daß ein Bleischirm von 1,8 cm Dicke 2 Proz. der auf ihn fallenden Strahlung hindurchläßt; ein Bleischirm von 5,3 cm Dicke läßt noch 0,4 Proz. der auffallenden Strahlung hindurch. Ich konstatirte ferner, daß die von einem Bleischirm von 1,5 mm Dicke hindurchgelassene Strahlung zum großen Teil aus ablenkbaren (kathodenstrahlartigen) Strahlen bestand. Letztere sind also nicht nur im stande, große Entfernungen in Luft zu durchlaufen, sondern auch beträchtliche Schichtdicken von so stark absorbirenden festen Körpern wie Blei.
Wenn man mit dem in Fig. 2 dargestellten Apparat die Absorption der Gesamtstrahlung des Radiums durch ein Aluminiumblatt von 0,01 mm Dicke beobachtet, wobei das Blatt sich immer in derselben Entfernung von der strahlenden Substanz befindet, während die Entfernung AD des Kondensators verändert wird, so bilden die erhaltenen Resultate die Übereinanderlagerung der von den drei Strahlengruppen herrührenden Ergebnisse. Beobachtet man bei großem Abstand, so überwiegen die durchdringenden Strahlen und die Absorption ist schwach; beobachtet man bei kleinem Abstand, so überwiegen die α-Strahlen und die Absorption ist um so schwächer, je mehr man sich der Substanz nähert; für eine mittlere Entfernung hat die Absorption ein Maximum und das Durchdringungsvermögen ein Minimum.
| Abstand AD | 7,1 | 6,5 | 6,0 | 5,1 | 3,4 |
| Vom Aluminium durchgelassene Prozente der Strahlung | 91 | 82 | 58 | 41 | 48 |
Gleichwohl zeigen gewisse Absorptionsversuche doch eine gewisse Analogie zwischen den α-Strahlen und den ablenkbaren β-Strahlen.
So fand z. B. Herr Becquerel, daß die absorbirende Wirkung eines festen Schirmes auf die β-Strahlen zunimmt, wenn man die Entfernung des Schirmes von der Quelle vergrößert; wenn man also die Strahlen der Einwirkung eines Magnetfeldes unterwirft, wie in Fig. 4, so läßt ein unmittelbar auf die Strahlungsquelle gelegter Schirm einen größeren Teil des magnetischen Spektrums bestehen als ein auf die photographische Platte gelegter Schirm. Diese Veränderung der Absorptionswirkung des Schirmes mit der Entfernung desselben von der Quelle ist ganz analog dem, was für die α-Strahlen gefunden; sie wurde von den Herren Meyer und v. Schweidler bestätigt, die sich der fluoroskopischen Methode bedienten; Herr Curie und ich beobachteten dieselbe Tatsache mit der elektrischen Methode. Die Entstehungsbedingungen dieses Phänomens sind noch nicht näher untersucht. Wenn man jedoch das Radium in ein Glasröhrchen einschließt und in ziemlich große Entfernung vom Kondensator bringt, der von einer dünnen Aluminiumhülle umgeben ist, so ist es gleichgültig, ob man den Schirm bei der Quelle oder beim Kondensator aufstellt; der erhaltene Strom ist in beiden Fällen derselbe.
Die Untersuchung der α-Strahlen hatte mich[44] zu der Ansicht geführt, daß diese Strahlen sich wie Projektile verhalten, die mit einer gewissen Geschwindigkeit fortgeschleudert werden und beim Passiren von Hindernissen an Geschwindigkeit verlieren. Gleichwohl besitzen diese Strahlen geradlinige Fortpflanzung, wie Herr Becquerel durch folgenden Versuch nachwies. Das die Strahlen emittirende Polonium befand sich in einer sehr feinen geradlinigen Vertiefung, die in ein Kartonblatt eingeschnitten war. Man hatte also eine lineare Strahlungsquelle. Ein Kupferdraht von 1,5 mm Durchmesser befand sich parallel zur Quelle in einem Abstand von 4,9 mm. Eine photographische Platte war parallel hierzu in einem Abstand von 8,65 mm aufgestellt. Nach einer Exposition von 10 Minuten erschien der geometrische Schatten des Drahtes in durchaus vollkommener Form, in den vorausberechneten Dimensionen und mit einem sehr feinen Halbschatten auf jeder Seite, der durchaus der Breite der Quelle entsprach. Der Versuch gelang ebenso, wenn man auf den Draht ein doppeltes Aluminiumblatt legte, das die Strahlen durchdringen mußten.
Es handelt sich also um Strahlen, die scharfe geometrische Schatten geben können. Der Versuch mit dem Aluminium zeigt, daß die Strahlen durch das Blatt nicht diffundirt werden und daß dieses auch nicht in nennenswerter Menge Sekundärstrahlen analog den sekundären Röntgenstrahlen emittirt.
Die Versuche Rutherfords zeigen, daß die Projektile, aus denen die α-Strahlen bestehen, im Magnetfeld abgelenkt werden, als seien sie positiv geladen. Die Ablenkung im Magnetfeld ist um so schwächer, je größer der Ausdruck mv / e ist, wobei m die Masse, v die Geschwindigkeit und e die Ladung des Teilchens bedeutet. Die Kathodenstrahlen des Radiums werden schwach abgelenkt, weil ihre Geschwindigkeit enorm ist; sie haben ferner ein großes Durchdringungsvermögen, weil die Teilchen gleichzeitig große Geschwindigkeit und sehr kleine Masse haben. Teilchen dagegen, die bei gleicher Ladung und kleinerer Geschwindigkeit eine viel größere Masse haben, werden zwar ebenso schwach ablenkbar im Magnetfelde sein, anderseits aber notwendig sehr absorbirbare Strahlen ergeben. Aus den Versuchen von Rutherford scheint hervorzugehen, daß dies für die α-Strahlen der Fall ist.
Um eine Wirkung der α-Strahlen handelt es sich wahrscheinlich bei dem schönen Versuch mit dem Crookesschen Spinthariskop[85]. Dieser Apparat besteht im wesentlichen aus einem Körnchen Radiumsalz, das am Ende eines Metalldrahtes vor einem Schirm aus phosphorescirendem Zinksulfid befestigt ist.
Die Entfernung des Kornes vom Schirm ist sehr klein (etwa ⅓ mm) und man beobachtet mit einer Lupe die dem Radium zugewandte Seite des Schirmes. Das Auge bemerkt dann auf dem Schirme einen wahrhaften Regen von Lichtpunkten, die fortwährend erscheinen und wieder verschwinden. Der Schirm sieht aus wie der gestirnte Himmel. In den dem Radium benachbarten Punkten befinden die Lichtpunkte sich näher aneinander, und in unmittelbarer Nähe des Radiums erscheint das Leuchten kontinuirlich.
Durch einen Luftstrom scheint das Phänomen nicht beeinflußt zu werden; es tritt auch im Vakuum auf; ein noch so dünner Schirm zwischen dem Radium und dem Leuchtschirm unterdrückt es; die Erscheinung scheint also von den absorbirbarsten α-Strahlen des Radiums herzurühren.