Reaktion von Kalium, Eisen und Zink auf Wasser.

Bei einem früheren Versuche, den uns Humphry Davy gelehrt, sahen wir, wie ein Körper, nämlich das Kalium, auf Wasser einwirkte. Um es Euch ins Gedächtnis zurückzurufen, will ich jetzt das Experiment auf diesem Teller wiederholen. Wir haben es mit einem Ding zu tun, das sehr vorsichtig behandelt sein will; denn Ihr seht, wenn ich die Masse nur mit einem kleinen Tröpfchen Wasser bespritze, so gerät sie sofort teilweise in Brand; und wenn die Luft frei hinzutreten könnte, so würde das Ganze schnell in Feuer aufgehen. Es ist dies ein schönes und glänzendes Metall, welches in der Luft und, wie Ihr wißt, im Wasser sich äußerst rasch verändert. Ich werde nun ein Stückchen auf Wasser legen und Ihr seht es wundervoll brennen, indem es eine schwimmende Lampe bildet, wobei es Wasser anstatt Luft verbraucht. Nehmen wir ferner ein wenig Eisenfeil- oder Drehspäne und legen sie in Wasser, so finden wir, daß sie ebenfalls eine Veränderung erleiden. Sie verändern sich zwar nicht so rasch wie das Kalium, aber im ganzen in derselben Weise. Sie werden rostig und zeigen eine Einwirkung auf das Wasser, und wenn auch der Grad derselben ein geringerer ist, als beim Kalium, so ist doch die Art ihrer Einwirkung auf das Wasser im großen und ganzen dieselbe. Ich muß Euch bitten, diese verschiedenen Punkte genau zu merken. Hier habe ich ein anderes Metall, Zink, und als wir uns mit der festen Masse beschäftigten, die bei seiner Verbrennung entsteht, hatten wir Gelegenheit, zu sehen, daß es brennbar ist; ich glaube nun, wenn ich einen kleinen Streifen von diesem Zink nehme und über die Kerzenflamme halte, so werdet Ihr ein Mittelding vom Verbrennen des Kalium und von der Einwirkung des Eisens auf Wasser beobachten – seht, es findet eine Art von Verbrennung statt. Es ist verbrannt, und das Produkt ist eine weiße Asche. Auch dieses Metall übt eine gewisse Wirkung auf das Wasser aus.

Nach und nach haben wir gelernt, die Wirkungen dieser verschiedenen Körper zu beherrschen und sie zu zwingen, uns zu sagen, was wir wissen wollen. Zunächst noch etwas vom Eisen. Es ist eine gewöhnliche Erfahrung bei allen chemischen Prozessen, daß sie durch Anwendung der Wärme gefördert werden, und wenn wir die Wirkung der Körper auf einander genau und sorgsam studieren wollen, so müssen wir stets den Einfluß der Wärme mit berücksichtigen. Ihr werdet wohl noch wissen, daß Eisenfeilspäne sehr schön in der Luft brennen; aber ich will Euch noch ein anderes Experiment zeigen, welches Euch das Verständnis dessen erleichtern wird, was ich von der Einwirkung des Eisens auf Wasser sagen will. Wenn ich eine Flamme nehme und sie hohl mache – Ihr wißt, warum: ich will ihr Luft sowohl von innen als von außen zuführen – und streue dann Eisenfeilspäne in die Flamme, so seht Ihr sie recht hübsch brennen. Diese Verbrennung wird natürlich durch den chemischen Prozeß bewirkt, der bei der Entzündung dieser Teilchen vor sich geht. Und so wollen wir nun weiter fortschreiten und untersuchen, was das Eisen tut, wenn es mit Wasser in Berührung kommt. Es wird uns seine Geschichte so schön, so stufenweise und regelmäßig erzählen, daß ich glaube, es wird Euch sehr gefallen.

Fig. 14.

Zerlegung des Wasserdampfs.

Ich habe hier einen Schmelzofen, durch den eine eiserne Röhre, ein Flintenlauf, geht; diesen Lauf habe ich mit blanken Eisendrehspänen vollgestopft und ins Feuer gelegt, um ihn rotglühend zu machen. Wir können entweder Luft durch den Lauf streichen lassen, um sie mit den Drehspänen in Berührung zu bringen, oder wir können aus diesem kleinen Kochgefäß am Ende des Laufs Wasserdampf hindurchschicken. Hier ist ein Hahn, der den Dampf so lange vom Laufe abschließt, bis wir ihn hindurchlassen wollen. In diesen Glasgefäßen links ist etwas Wasser, welches ich blau gefärbt habe, damit Ihr besser seht, was darin vor sich geht. Nun wißt Ihr doch recht gut, daß der Dampf, wenn ich ihn durch diesen Lauf und alsdann durch das kalte Wasser leite, sich eigentlich wieder verdichten müßte; denn Ihr habt gesehen, daß der Wasserdampf seine Gasform nicht behalten kann, sobald er abgekühlt wird. Ihr saht, wie er hier [auf den eingedrückten Blechzylinder[10] zeigend] sich auf einen so kleinen Raum zusammenzog, daß das Gefäß von der äußeren Luft eingedrückt wurde. Also – lasse ich Dampf durch den Lauf hindurchgehen, so wird er kondensiert werden – vorausgesetzt, daß der Lauf kalt geblieben wäre. Aber um das Experiment machen zu können, das ich Euch jetzt zeigen will, ist er eben erhitzt worden. Ich lasse nun den Dampf in kleinen Mengen durch den Lauf hindurch, und Ihr sollt selbst sagen, ob es noch Dampf ist. Der Dampf läßt sich zu Wasser verdichten; setzt man seine Temperatur herab, so verwandelt er sich zurück in flüssiges Wasser; nun habe ich doch die Temperatur des Gases, welches ich in diesem Gefäß aufgefangen, dadurch verringert, daß ich es nach seinem Austritt aus dem Flintenlauf durch Wasser gehen ließ, und trotzdem will es nicht wieder zu Wasser werden. Ich will noch einen andern Versuch damit anstellen. [Ich halte das Gefäß umgekehrt, damit mir das Gas nicht entwischt.] Wenn ich ein Licht an die Öffnung des Gefäßes bringe, so fängt dessen Inhalt mit gelindem Geräusch Feuer. Dies sagt Euch, daß es kein Wasserdampf ist; Dampf löscht ein Licht aus, brennt aber nicht, während Ihr doch das, was ich in dem Gefäße habe, brennen seht. Wir können dieses Gas ebenso aus dem Wasser erhalten, welches aus der Kerze oder auf andere Art gewonnen wurde. Wenn es durch Einwirkung der Eisenspäne auf den Wasserdampf entsteht, so bleibt das Eisen in einem ähnlichen Zustande zurück, wie die Feilspäne, wenn sie verbrannt werden. Das Eisen hat dabei an Gewicht zugenommen. So lange das Eisen in der Röhre allein bleibt, und ohne Zutritt von Luft oder Wasser erhitzt und wieder abgekühlt wird, verändert es sein Gewicht nicht; ist aber ein solcher Dampfstrom darüber hinweggegangen, so wird es schwerer, weil es einen Bestandteil des Dampfes in sich aufgenommen hat, während der andere Bestandteil weiterging und hier von uns aufgefangen wurde. Und nun, da wir noch ein anderes Gefäß voll haben, will ich Euch daran eine sehr interessante Erscheinung zeigen. Es ist ein brennbares Gas, und ich könnte den Inhalt des Gefäßes auf einmal anzünden, um Euch das zu beweisen; aber ich will Euch mehr zeigen, wenn es geht. Es ist auch eine sehr leichte Substanz. Es steigt in der Luft empor und läßt sich nicht wie Wasserdampf verdichten. Ich nehme ein anderes Glasgefäß, welches nichts als Luft enthält; wenn ich es mit einem Wachsstock untersuche, finde ich, daß nichts als Luft darin ist. Ich nehme nun dieses Gefäß mit unserm neuen Gase und verfahre mit demselben, als ob es ein leichter Körper wäre. Ich halte zunächst beide Gefäße neben einander, die Mündungen nach unten. Nun kehre ich das mit dem neuen Gas gefüllte um, so daß seine Mündung aufwärts und gerade unter die Mündung des mit Luft gefüllten kommt. Das, welches vorhin das Gas enthielt, was enthält es jetzt? Ihr findet, daß es nur Luft enthält. Aber seht! Hier in dem andern Gefäß ist das brennbare Gas, das ich also aus einem Gefäß in das andere, und zwar aufwärts ausgegossen habe. Es besitzt noch gänzlich seine vorigen Eigenschaften und verharrt in seiner Selbständigkeit; und es ist für unsere weiteren Untersuchungen über die Verbrennungsprodukte der Kerze von großem Wert.

Fig. 15.