| Geologische Zeit | Mineral | Fundort |
ccm He auf 1 g Uranoxyd |
Alter in Jahrmillionen |
|---|---|---|---|---|
| Diluvium | Zirkon | Vesuv | 0,01 | 0,1 |
| „ | „ | Eifel | 0,09 | 0,96 |
| Pliozän | „ | Neuseeland | 0,146 | 1,56 |
| Miozän | „ | Auvergne | 0,57 | 6,1 |
| Eozän | Hämatit | Irland | 2,38 | 25,5 |
| Oberkarbon | Limonit | England | 12,8 | 137 (320) |
| Mitteldevon | Zirkon | Brevig, Norwg. | 4,31 | 46,1 (340) |
| Silur | Thorianit | Ceylon | 22,6 | 242 (500) |
| Ober-Präkambrium | Zirkon | Ceylon | 25 | 267 (1200) |
| Unter-Präkambrium | „ | Kanada | 56 | 600 (1500) |
Die Heliummethode gibt demnach durchweg kleinere Zahlen als die Bleimethode, was sich aus den bereits angeführten Tatsachen leicht erklärt. Es scheint, daß im allgemeinen nur ungefähr der dritte Teil des gebildeten Heliums im Mineral festgehalten bleibt; daher erreichen auch die Alterszahlen im Durchschnitt nur ein Drittel der nach der Bleimethode bestimmten Zahlen.
Versuchen wir unsere Überlegungen zusammenzufassen, so können wir auf alle Fälle sagen: Die Ergebnisse der radioaktiven Methode der Altersbestimmung machen durchaus den Eindruck großer Zuverlässigkeit. Sie fügen sich zwanglos dem Rahmen ein, den die Geologie aufgestellt hat. Die absoluten Alterszahlen stehen mit der relativen Altersbestimmung nirgends in Widerspruch. Das gleichbleibende Verhältnis von Uran und Blei bei Mineralien desselben Vorkommens zeigt deutlich, daß ihm ein bestimmtes Gesetz zugrunde liegt.
So erfüllt tatsächlich die neue Methode alle Anforderungen, die an ihre Ergebnisse gestellt werden müssen. Die Grenzen ihrer Anwendungsmöglichkeit sollen allerdings auch nicht verschwiegen werden. Leider sind die Mineralien, die sie braucht, recht selten und nur in vollständig unverwittertem Zustand verwendbar. Mit der radioaktiven Methode kann nur das Alter von Uranmineralien, und damit der Zeitpunkt des Ausbruchs und der Erstarrung ihres Muttergesteins bestimmt werden. Nun ist es oftmals unmöglich, das relative Alter eines solchen Gesteins genau festzulegen; es kann von ihm (wie bei 2) unter Umständen nur ausgesagt werden, daß es jünger als Kambrium, aber älter als Tertiär sein müsse, und das sind sehr weit gezogene Grenzen. In einem solchen Fall ist leider auch die schönste Altersbestimmung für die Festlegung eines Punktes in der Erdgeschichte verloren. Wenn die Wissenschaft in Anwendung der neuen Methode später einmal vollständige Sicherheit erlangt hat, so besitzt sie allerdings damit die Möglichkeit, mit Hilfe des absoluten Alters eines Gesteins auch die Formation zu bestimmen, der es angehören muß. Bedauerlich ist es, daß bis jetzt noch keine ganz zuverlässige Altersbestimmung für ein jüngeres Gestein, etwa aus der Jura- oder Tertiärzeit, vorliegt. Es fehlen eben bis jetzt aus Gesteinen dieser Formationen die zur Untersuchung verwendbaren Uranmineralien. Leicht und bequem zu handhaben ist die Methode nicht. Die chemische Analyse wäre zwar an sich nicht besonders schwierig; sie fordert aber, um zuverlässig zu sein, jedesmal noch eine besondere Atomgewichtsbestimmung des Bleis, die in der notwendigen Genauigkeit nur von ganz wenigen Spezialforschern ausgeführt werden kann. Alles in allem können wir aber sagen, daß die neue Methode der Altersbestimmung einen ungeheuren Fortschritt bedeutet: das rohe Schätzen und Extrapolieren haben wir verlassen; wir sind mit ihr in den Bezirk exakter physikalisch-chemischer Forschung eingetreten. Ihre wissenschaftliche Grundlage, die Zerfallstheorie der radioaktiven Elemente, darf schon heute als gesicherter Bestand der Wissenschaft gelten, obwohl sich die einzelnen Angaben über Zerfallszeiten bei zukünftigen genaueren Bestimmungen noch etwas ändern können. Zwei grundlegende Voraussetzungen sind allerdings noch in den Berechnungen enthalten: Wir müssen einmal annehmen, daß das Uranmetall rein und ohne seine Folgeprodukte bei der Bildung des Minerals in dieses eingetreten sei. Das ist eine Annahme, die von der Mineralogie überaus wahrscheinlich gemacht wird. Das zweite muß in seiner Art bei jedem geologischen Zeitmesser zugrunde gelegt werden. Wir müssen voraussetzen, daß die „Uranuhr“, wie wir sie kurz heißen wollen, im ganzen Verlauf der geologischen Vorzeit gleich rasch gegangen sei wie heute. Wir werden auf diese Frage nochmals zurückkommen.
Mit diesen Altersbestimmungen nach radioaktiver Methode ist ein Wunsch in Erfüllung gegangen, den wir zum Schluß des zweiten Kapitels ausgesprochen haben: Wir haben durch physikalisch-chemische Messung die sichere zeitliche Festlegung mehrerer Punkte in früher geologischer Vergangenheit erreicht. Damit ergeben sich ohne weiteres auch brauchbare Werte für die dazwischenliegende Zeit. Vom Extrapolieren können wir, wie der Mathematiker sagen würde, zum Interpolieren übergehen; wir bestimmen den Verlauf der Zeitkurve zwischen zwei festen, weit auseinanderliegenden Punkten. Es ist ja nötig, durch eine größere Zahl von Altersbestimmungen die Sicherheit der Ergebnisse noch zu verstärken; aber es kann gesagt werden, daß auch schon die heute vorliegenden Zahlen infolge ihrer Widerspruchslosigkeit einen sehr hohen Grad von Wahrscheinlichkeit beanspruchen dürfen. Das ist alles, was überhaupt erwartet werden kann, sind wir doch Eintagsfliegen, denen jedes unmittelbare Herantreten an die Messung geologischer Zeiträume immer versagt bleiben wird. Stellen wir die zuverlässigsten Zahlen heraus, so sind es die für das Alter des Karbons mit 320 Millionen Jahren (vielleicht etwas zu hoch), des Untersilurs mit 400 Millionen Jahren, des Mittel-Präkambriums mit 1000 und 1300 Millionen Jahren. Es gilt nun, in diesen Rahmen die übrigen Ereignisse der Erdgeschichte schätzungsweise einzufügen, wie der Kartograph nach der genauen Festlegung seiner trigonometrischen Punkte das übrige in seine Karte einzeichnet. Einer der wichtigsten Punkte ist der Beginn des Kambriums. Nach den obigen Zeitbestimmungen können wir als wahrscheinliche Zahl etwa 500 Millionen Jahre für ihn einsetzen (Barrell nimmt 600 Millionen Jahre an). Auf diesen Zeitraum verteilen sich die zehn Formationen des Geologen, deren jede etwa 40–80 Millionen Jahre zu ihrer Bildung beansprucht haben mag. Für das Tertiär wird ein Wert in der Nähe der unteren Grenze anzusetzen sein, ein Ergebnis, das unsere frühere Schätzung aufs schönste bestätigt.
Für das Präkambrium, das noch weit über das Kambrium zurückführt, muß auf alle Fälle ein Zeitraum angenommen werden, der die Dauer aller späteren Epochen um das Mehrfache übersteigt. Alle Gesteine dieser Periode sind in ihren Mächtigkeiten verändert, in der stärksten Weise umgebildet und zum größten Teil zu kristallinen Schiefern geworden, deren Ursprung man kaum mehr zu erkennen vermag. Die Zeitdauer ihrer Bildung muß noch weit das Maß übersteigen, das schon ihre ungeheure Schichtmächtigkeit erwarten läßt. Tatsächlich ergibt ja die radioaktive Methode für das Präkambrium einen Zeitraum von weit über einer Milliarde Jahre, wenn die Zeit vom Mittelpräkambrium bis zum Beginn des Kambriums allein schon 800 Millionen Jahre beträgt. Daß ganz ungeheure Zeiträume dem Präkambrium zugrunde liegen müssen, ergeben vor allem auch entwicklungsgeschichtliche Überlegungen. Weist doch die Tierwelt des Kambriums Vertreter von außerordentlich hoher Entwicklung auf; vom Anfang des Lebens überhaupt bis zu dieser Entwicklungshöhe muß der Weg vielmal weiter gewesen sein als vom Beginn des Kambriums bis zur Jetztzeit. War er dreimal, war er zehnmal, oder gar hundertmal so weit? Niemand vermag es zu sagen. Alle Anhaltspunkte fehlen uns; die Anfänge des Lebens sind vielleicht in uralten Schichten des Präkambriums begraben, aber ihre Spuren sind bereits vollständig verwischt und es ist so gut wie aussichtslos, über sie jemals etwas Bestimmtes zu erfahren.
Noch viel unsicherer werden unsere Vermutungen, wenn wir Jahreszahlen für noch weiter zurückliegende Entwicklungszustände unserer alten Erde finden wollen. Wir haben bereits die Altersbestimmung des Ozeans aus seinem Salzgehalt abgelehnt; dasselbe wird mit gewissen physikalischen Methoden der Fall sein müssen. Eine große Rolle hat bis vor kurzer Zeit der Versuch des englischen Physikers Thomson (Lord Kelvin) gespielt, aus der Abkühlung der Erde ihr Alter zu berechnen (1897). Von den physikalischen Gesetzen der Wärmestrahlung ausgehend, kam er auf das Ergebnis, daß eine Kugel von der Größe und Beschaffenheit der Erde zur Abkühlung von einem feuerflüssigen Zustand bis zur heutigen Oberflächentemperatur etwa 40 Millionen Jahre nötig habe. Diese Zahl hatte von vornherein sehr wenig innere Wahrscheinlichkeit. Es läßt sich überzeugend nachweisen, daß im Kambrium keine wesentlich höhere Temperatur bestanden haben kann als heute. In dem großen Vorgang der Abkühlung könnte daher der Zeitspanne vom Kambrium bis zur Jetztzeit nur ein ganz geringer Prozentsatz der 40 Millionen Jahre zufallen, und daraus würden sich so geringe Zahlen für die Bildungszeiten der einzelnen geologischen Formationen ergeben, daß kein Geologe ihre Richtigkeit zugeben könnte. Nun hat sich aber weiterhin im Zusammenhang mit der radioaktiven Forschung eine Tatsache ergeben, die allein für sich genügt, die Berechnung Thomsons ungültig zu machen. Thomson kannte nämlich die Tatsachen des radioaktiven Zerfalls noch nicht und konnte daher in seine Wärmerechnung einen überaus wichtigen Aktivposten nicht einstellen: den Zuwachs an Wärme, den die Erde durch den Zerfall radioaktiver Substanzen andauernd erfährt. Es ist versucht worden, die Menge der radioaktiven Stoffe in den uns zugänglichen Teilen der Erdrinde zu bestimmen; dabei ergaben sich so erhebliche Mengen, daß ihre Wärmeerzeugung beim Zerfall vollständig genügt, um den Verlust aufzuheben, den die Erde durch Wärmeausstrahlung erleidet. Ja es ist sogar für die Wissenschaft zum Problem geworden, wie es möglich sei, daß die Erde nicht dauernd heißer werde! Es müssen besondere Annahmen über die Verteilung der radioaktiven Stoffe in größerer Tiefe gemacht werden, um die ziemlich gleichbleibende Wärme der Erdrinde verständlich zu machen. Wir sehen, dieser eine Umstand genügt vollständig, um die Berechnung Thomsons unbrauchbar zu machen. Wir tun am besten, mit unsern Versuchen absoluter Altersbestimmungen nicht weiter zurückzugehen als bis zu einem Zeitpunkt, den wir noch mit erprobten Methoden erfassen können. Die Wissenschaft vermag im heutigen Augenblick noch nicht das „Alter der Erde“ schlechthin zu bestimmen. Wir wollen bescheidener sein und uns an der Berechnung von Zahlen für das Alter des Kambriums oder des Präkambriums genügen lassen.
V. Schlußbetrachtung und Ausblick.
Drei große Gruppen von Methoden haben uns zu unsern Ergebnissen geführt; es ist zum Schluß nötig, die eingeschlagenen Wege nochmals im Zusammenhang zu überblicken. Die erste Methode versuchte, die auf der Erde gebildeten Sedimentgesteine als die Leistung immerfort arbeitender geologischer Kräfte zu erklären und daraus die Zeitdauer ihrer Bildung zu berechnen. Das wahrscheinlichste Ergebnis waren etwa 300 Millionen Jahre; diese Zeit wäre zur Bildung aller, auch der präkambrischen Sedimente nötig gewesen. Nach dem Verhältnis der bekannten Sedimentmächtigkeiten würde hiervon mehr als die Hälfte, mindestens 200 Millionen Jahre, auf die Zeit vom Kambrium bis zur Jetztzeit entfallen. Dazu muß aber gesagt werden, daß auf diese Weise die Zeit des Präkambriums sicher bedeutend unterschätzt wird. Die zweite Methode geht von schönen und zuverlässigen Zeitmessungen geologischer Vorgänge der Nacheiszeit aus und führt unter Verwendung von Verhältniszahlen durch kühne Extrapolation auf den weiten Rahmen von 40–1600 Millionen Jahren für das Alter des Kambriums, wobei sich als wahrscheinlichste Werte 200–600 Millionen Jahre ergeben. Die radioaktive Methode gibt schließlich die Möglichkeit, ganz bestimmte Alterszahlen zu berechnen, die für das Karbon rund 300 Millionen Jahre, für das Kambrium etwa 500 Millionen Jahre, für frühe Zeitpunkte des Präkambriums mindestens 1500 Millionen Jahre betragen. Wie lassen sich nun all diese Ergebnisse vereinigen? Zunächst ist zu sagen, daß sich die Ergebnisse des ersten und zweiten Wegs durchaus nicht widersprechen. Die nach der ersten Methode berechneten Alterszahlen fallen in den Rahmen der zweiten, und auch die mittleren Werte kommen einander recht nahe. Ebenso führen die Altersbestimmungen von Uranmineralien zu Zahlen, die sich ohne weiteres in den Rahmen der zweiten Methode einfügen. Dagegen besteht tatsächlich ein Widerspruch zwischen den Ergebnissen des ersten und dritten Wegs, die beide bestimmte Zahlen nennen, der erste für das Alter des Kambriums 200 Millionen Jahre, des Präkambriums ungefähr 300 Millionen Jahre, der zweite 500 und 1500 Millionen Jahre. Wie ist dieser Widerspruch zu lösen? Beide Methoden haben die Voraussetzung, daß ihre geologische Uhr in der ganzen Vergangenheit gleich schnellen Gang gehabt habe wie in der Gegenwart. Nun ist es denkbar, daß die Sedimentationsuhr, wie wir sie kurz heißen wollen, in der Vergangenheit langsamer gegangen wäre als in der Gegenwart. Dann hätte uns die Uhr mit ihrem gegenwärtigen raschen Lauf für die Vergangenheit zu kleine Zeitwerte angegeben; wir müßten also die höheren Jahreszahlen der Uranuhr als die richtigen annehmen. Es wäre aber auch denkbar, daß die Uranuhr heute langsamer ginge als in geologischer Vorzeit. Dann hätte sie uns zu große Zeiträume vorgetäuscht und die Sedimentationsuhr hätte recht.[11]
[11] Den dritten Fall, daß beide Uhren falsch gehen könnten, wollen wir außer Betracht lassen.