Fig. 55 a.

Oder zweitens die Berührungsebene durchdringt in der Nähe des Berührungspunktes die Fläche so, daß die Schnittkurve beider im Berührungspunkte einen Doppelpunkt besitzt. Dann heißt die Fläche daselbst sattelförmig (negativ oder hyperbolisch gekrümmt). Vgl. [Fig. 56] und [56 a]. Das einschalige Hyperboloid oder das hyperbolische Paraboloid ist in jedem seiner Punkte sattelförmig; die Schnittkurve besteht hier aus den beiden, sich im Berührungspunkte schneidenden erzeugenden Geraden.

Fig. 56.

Fig. 56 a.

Oder drittens: die Berührungsebene dringt zwar ebenfalls in der Nähe des Berührungspunktes in die Fläche ein, aber so, daß die Schnittkurve beider nur einmal durch den Berührungspunkt geht. Dann heißt die Fläche in dem betreffenden Punkte parabolisch gekrümmt. Vgl. [Fig. 57] und [57 a]. Ein Kegel mit beliebiger Basis ist in jedem seiner Punkte parabolisch gekrümmt. Flächenstücke, deren sämtliche Punkte parabolisch gekrümmt sind, lassen sich ohne Dehnung und Faltung derartig verbiegen, daß sie Teile einer Ebene werden, oder, was dasselbe besagt, man kann sie auf eine Ebene abwickeln; daher heißen solche Flächen abwickelbar.