The cohesive power of water is beautifully illustrated. Have a small barrel or bucket so constructed as to be fitted with gauze at the top; immerse it exactly, so that the water may form a film between the meshes, and then open the tap at the bottom: the water will not flow till the meshes at the top are broken by blowing on their surface. The adhesion of the particles in a soap-bubble is another illustration, no less beautiful, as well as more familiar; for the soap, which might be supposed to be the cause of the phenomenon, serves only to prevent the intrusion of dust between the particles, but by no means to intensify their attractive power.
There are some liquids the adhesiveness of whose particles is so perfect as to bar out the access of air when we strew them on the surface of other liquids; and on the Continent it is not uncommon to protect wines against the action of the atmosphere by, instead of corking the bottle, simply pouring in a few drops of oil, which, being lighter than the wine, floats on the surface. It is parallel to the instance of the barrel with the gauze-wire top mentioned above, that if we loosely plug a bottle full of liquid with a piece of cotton-wool, and invert it, the particles in contact with the wool will cohere so closely that the fluid will not be able to escape. The adhesiveness of the particles of water to a solid surface can be exemplified by allowing one of the scales of a balance to float in water and leaving the other free; the one in contact with the water will refuse to yield after we have placed even a tolerable weight in the other which is suspended in the air.
The power of cohesion is more rigorous in some bodies than others. In some cases the body will rupture if it is interfered with ever so little; in others, the particles admit of a certain displacement, and if the limits are not transgressed, they return to their original position when the compressing or distending cause is removed. This rallying power in the cohesive force is called Elasticity, and it exists in no small degree in glass. The spaces between the particles can, within limits, be either lessened by compression or increased by distension, and the particles retain their power of recovering and maintaining the relation they stood in before they were disturbed. It is the power of cohesion or aggregation which resists any disturbance among the particles, and which restores order among them when once disturbance has taken place. And not only does nature resist directly any undue interference with the cohering force, but tampering with it even slightly has often a certain deteriorating effect upon the physical properties of bodies. A bell, for instance, loses its tone when heated, because by that means its particles are disturbed; though it recovers its tone-power as it cools, and as the particles return to their places.
In organic bodies, both during growth and decay, the particles are more or less in flux; but in feathers, after their formation, the attraction of aggregation remains constant, and by means of it their particles continue fixed in their places, not only with the life of the bird, but long after. Nay, you may even crumple them up, and toss them away as worthless, and yet if you expose them to the vapour of steam, they will not only recover their form, but they can be made to look as beautiful as ever.
Chemical Affinity.—The attraction of the particles of bodies of different kinds to each other is often striking and curious; as, for instance, those of salt to those of water. The salt attracts the water, and the water the salt, till at last, if there is a sufficient quantity of water, all the salt is attracted particle by particle from itself, and taken up and united to the water. The salt is no longer visible to the eye, and is said to be dissolved or in solution; but this change of form is due to its affinity for the water, and the resulting attraction of the one to the other. The same phenomena are observed, and they are due to the same cause, in other solutions; as when we infuse our tea or sweeten it with sugar. The attraction of water, or one of its elements rather, for other substances, sometimes shows itself in vehement forms. When a piece of potassium, for example, is thrown into a vessel of water, its attraction for the water is such, and of the water for it, that it instantly takes fire, and the two blaze away, particle violently seizing on particle until the elements of the water unite part for part with the metal. It is the mutually attractive force that causes the heat and flame which accompany the combination; and this force is most violently active in the union of dissimilar substances. Unions of a quieter kind, though not less thorough, occur even between solids when placed in contact. For instance, sulphate of soda and sulphate of ammonia, when placed side by side, will diliquesce, and in liquid form unite into a new combination. Sulphuric acid, when we mix it with water, generates great heat; and this is due to its attraction for the water. Sometimes two fluids unite together, and, in doing so, pass from the liquid into the solid form; as, e.g., sulphuric acid and chloride of calcium. Attraction of this nature is called chemical: it takes effect between dissimilar particles, and results in combinations with new properties. It operates not only between solid and solid, solid and liquid, and liquid and liquid, but between these and gases, and gases with one another; and these as well as those combine into new substances, and evince in the act not a little violent commotion. Thus, phosphorus catches fire in the atmosphere at a temperature of 140 degrees, and it goes on rapidly combining with the oxygen, burning with a dazzling white light, and producing phosphoric acid. Indeed, most metals have an affinity for the oxygen in the air, and oxydise in it with more or less facility; and a metal, as such, has more value than another according as it has less affinity for that element, and is less liable to oxydise or rust in it. This is one reason, among others, why gold is the most precious metal, and the conventional representative of highest worth in things.
There are some metals, such as lead, for instance, which oxydise readily, but this process stops short at the surface in contact with the air, and so forms a coating which prevents the metal from further oxydation; so that here, as in so many things else, strength is connected with weakness.
Electricity.—This, in the most elementary view of it, is a more or less attractive or repellant force latent in bodies, and which is capable of being roused into action by the application of friction. It is excited in a rod of glass by rubbing it with silk, and in a piece of sealing-wax by rubbing it with flannel, though the effect is different when we apply first the one and then the other to the same body. Thus, e.g., if we apply the excited sealing-wax to a paper ring, or a pith-ball, hung by a silk thread from a horizontal glass rod, it will, after contact, repel it; and if, thereafter, we apply to it the excited glass rod, it will attract it; or if we first apply the excited glass rod to the paper ring, or pith-ball, it will, after contact, repel it; and if thereafter we apply to it the excited sealing-wax, it will attract it. The reason is, that when we once charge a body by contact with either kind, it repels that kind, and attracts the opposite; if we charge it from the glass, i.e., with vitreous electricity, it refuses to have more, and is attracted to the sealing-wax; and if we charge it from the sealing-wax, i.e., with resinous electricity, it refuses to have more, and is attracted to the glass-rod; only it is to be observed that, till the body is charged by either, it has an equal attraction for both. From all which it appears that kindred electricities repel, and opposite attract, each other.
Two pieces of gold leaf suspended from a metal rod, inserted at the top of a glass shade full of perfectly pure, dry air, will separate if we rub our foot on the carpet, and touch the top of the rod with one of our fingers; for the motion of the body, as in walking, always excites electricity, and it is this which, as it passes through the finger, causes the phenomenon; though the least sensation of damp in the glass would, by instantly draining off the electricity, defeat the experiment. What happens in this case is, that one kind of electricity passes from the finger to the leaves, while another kind, to make room for it, passes from the leaf to the finger; and the leaves separate because they are both more or less charged with the same kind of electricity, and kindred electricities repel each other. Ribbons, particularly of white silk, when well washed, are similarly susceptible of electrical excitation; and they behave very much as the gold leaf does when they are rubbed sharply through a piece of flannel. Gutta-percha is another substance which, when similarly treated, is similarly affected.
This power is a very mysterious one, and of a nature to perplex even the philosophic observer. Certain bodies, such as the metals, convey it, and are called conductors; certain others, such as glass and porcelain, arrest it, and are called insulators. It is for this reason that the wires of the telegraph are supported by a non-conductor, for if not, the electric current would pass into the earth by the first post and never reach its final destination. Glass being an insulator, it was found that, if a glass bottle was filled with water, and then corked up with a cork, through which a nail was passed so that the top of it touched the water, it would receive and retain a charge as long as it was held in the hand; and this observation led to an invention of some account in the subsequent applications of electricity, known, from the place of its conception, as the Leyden jar. This is a glass jar, the inside of which is coated with tinfoil, and the outside as far as the neck, and into which, so as to touch the inside coating, a brass rod with a knob at the top is inserted through a cork, which closes its mouth. By means of this, in consequence of the isolation of the coatings by the glass, electricity can, in a dry atmosphere, be condensed, and stored up and husbanded till wanted.
A series of eggs, arranged in contact and in line, give occasion to a pretty experiment. In consequence of the shells being non-conductors, and the inside conducting, it happens that a current of electricity, applied to the first of the series, will pass from one to another in a succession of crackling sparks, in this way forcing itself through the obstructing walls. This effect of electricity in making its way through non-conducting obstructions accounts for the explosion which ensues when a current of it comes in contact with a quantity of gunpowder; as it also does for the fatal consequences which result when, on its way from the atmosphere to the earth, it rushes athwart any resisting organic or inorganic body.