I think it is now time to conclude this most interesting subject, for though I have by no means exhausted it, yet I fear I have said as much as a lecture will warrant. The subject shows us how mindful a kind Providence has been of man, and to this nation in particular, for to our coal we in a measure owe much of our greatness. So while we admire the geology of our globe, let us not forget who made it and all that it contains, and who, when He had finished the work, pronounced it all very good. Let us so strive to live, that though we may be called away suddenly, as 199 of our fellow-creatures were called by what is termed a mining accident, we may be ready to meet Him who not only made us, but made the coal, and who, when man, at first made perfect, fell away, was pleased to send a Saviour to redeem us and bring us to that light which fadeth not away.


SCIENCE APPLIED TO ART.

A resumé of science and art requires to set forth what they have already done and what they are now doing—to trace them down to our own time, and contrast their early stages with their present development. Giving to art and science all that is their due, it must be evident to every one that they are primarily not of human origin, but owe their existence and progress to those inherent faculties of man which have been bestowed upon him by an Almighty Being—faculties given not only to fathom the works of creation, and adapt them for man's use and benefit, but also that they might show forth the praise and honour of their Creator, as "the heavens declare the glory of God, and the firmament showeth His handiwork." To set forth science and art before an Institution like that here met together, behoves one to enter upon the subject in a way which will not only interest but also instruct. But this is only an opening address, and the lecturers who will follow me in due course will bring before you the special interests of those special subjects on which they are to treat. These cannot fail to interest as well as instruct those who attend, their object being profit to the mind, and hence not only the furtherance of mental culture, but increasing capabilities for material prosperity.

To address a meeting in Glasgow gives one a feeling of pleasure; but, before going further, I trust that when I have finished you may not be able to say of me, as the two Highlanders did after leaving church—"Eh, man! wasna that a grand discoorse?—it jumbled the head and confused the understanding!" This city has brought forth one of the greatest of men—though, like many others, he had to fight an uphill battle in his early career—that man was James Watt. But what a career was his! and what a benefit to all now living has proved the result of his perseverance, for to his genius are we mainly indebted for the manifold applications of the wondrous power of Steam! That word is enough; and the engines it now propels are a powerful testimony to the talent of the great man who brought this mighty power to bear on the vast machinery, not only of this great country, but of the whole world. Contrast, for one thing, the travelling facilities of Watt's early days with those we now possess through his persevering industry. Fourteen days was then the usual time for a journey from Glasgow to London, while at present it can be performed in a less number of hours.

Railways! what have they not done! We see towns spring up in a few years where only a few cottages formerly stood, and wild glens transformed into fruitful valleys, by means of railways in their neighbourhood developing traffic and trade, and creating employment by placing them in communication with larger towns, and thus opening up new sources of material prosperity. Look at the magnitude of our railways. With respect to locomotives alone, in 1866 there were 8125 of these, and the work performed by them was the haulage of 6,000,000 trains a distance of 143,000,000 miles. As each engine possesses a draught-power equal to 450 horses, these 8125 locomotives consequently did the work of more than 3,500,000 horses, and as the average durability of a locomotive is computed to be about fifteen years, each will have in that time traversed nearly 300,000 miles! Then, again, there have to be replaced about 500 worn-out locomotives every year, at a cost for each of about £2500 to £3000, entailing an annual expenditure of nearly £1,500,000 sterling. All this money circulates for the country's benefit, keeping our iron, copper, and coal mines, our furnaces and our workshops, all at work, and our people well and usefully employed, and thus proving one of the greatest advantages of applied science and art to this country and the world at large. If it had not been for steam, this valuable Institution might not have been in existence, having for its chief objects the promotion of the growth and increasing the usefulness of the applied sciences.

We have now one of the greatest triumphs of engineering art in the Mont Cenis Railway, and this, though worked out under great difficulties, has proved a perfect success. Still more recently we have had brought under our notice the bold scheme of connecting Britain and France by a tunnel under the English Channel—a project which, but a few years ago, any one would have been thought mad to propose; but science has proved that it can be carried out; and it is only a few days since a large meeting was held in Liverpool with a view of tunnelling under the Mersey, and thus connecting Liverpool and Birkenhead. Nor do these schemes seem at all visionary when we learn that our go-ahead Transatlantic cousins have a project before the Legislature of New Jersey for laying wooden tubes underground, through which the mails and small parcels will be forwarded at the rate of 150 miles an hour! Through a similar tube, 6 feet in diameter, laid under the East and Hudson Rivers, passengers are to be transported from Brooklyn to Jersey city. A like scheme is in course of construction under the Thames.[A] Another American engineering triumph will be the railway suspension bridge proposed to be built across the Hudson River at Peekskill, in the hilly district known to New Yorkers as the Highlands, which is to have a clear span of 1600 feet at a height of 155 feet above high water.

Another grand and comparatively recent application of steam is in its adaptation to agriculture. Fields are now turned up by the steam-plough—an invention as yet in its infancy—in a manner that could never be done by mere hand-labour. Steam-culture has already penetrated as far north as John-o'-Groats, where I have one of the ploughs of Mr. Howard of Bedford, and but for its assistance I could not have taken in the land I have now worked up. So great is the demand for steam-cultivating apparatus, not only in Britain, but throughout the German plains and the flat alluvial soils of Egypt, that the makers have now more orders than they can readily supply.

In all our manufactories steam proves itself the motive power, and there is hardly a large work without it. This city can show its weaving, spinning, bleaching, and dyeing works—all which have tended to raise Glasgow from the small town of Watt's time to the proud position it now holds of being the first commercial city of Scotland. In this city, second only to Manchester in the production of cotton goods, it cannot fail to be interesting to state, that in the first nine months of the present year there has been exported 2,188,591,288 yards of cotton piece-goods manufactured in this country—a larger quantity by nearly 150,000,000 yards than the corresponding period of 1867, the year of the largest export of cotton manufactures ever known until then. Of course Glasgow has had its share in this great branch of export trade, rendering it large, wealthy, and populous—results which have mainly followed from the application of science to art.

Last, not least, see what steam has enabled us to do in regard to the food for the mind, both in printing it and afterwards in its distribution. Look, for instance, to Printing House Square—to the "Times" newspaper. In the short space of one hour 20,000 copies are thrown off the printing-machine, and, thanks to the express train, the same day the paper can be read in Glasgow. Still further in this direction, the value of steam is also shown by its having enabled us to produce cheap literature, so strikingly instanced in the world-famed works of Sir Walter Scott, which we are now enabled to purchase at the small sum of sixpence for each volume—a result which well shows the application of science to art.