2. Heated air expands, becomes lighter, and exerts less pressure.

3. Cold air comes from the side to take the place of hot air that rises.

When the rays of the sun heat an area of the earth, the air over such a place expands and becomes lighter, naturally rising, and the result of this is that the winds are produced by cool air moving in to take the place of the heated air. This cool air moves in from all directions. When such a thing happens at any point on the earth’s surface, it is known as a storm center, an area of low pressure.

WHAT IS A CYCLONIC STORM?

Because of the rotation of the earth on its axis, a force arises which tends to deflect to the right all motions in the northern hemisphere, and to the left all motions in the southern hemisphere. The winds flowing toward the storm center are turned to the right or left and move in a spiral around the storm center. This system of whirling winds around a central region of low pressure produce what is termed a cyclonic storm. Storms have a tendency to move in an easterly or northeasterly direction, and at a rate of from five hundred to seven hundred miles a day. Cyclonic storms, although we look upon them as being very severe, are very often mild and not of an intensive character.

WHICH WAY DOES THE WIND BLOW AFTER A STORM?

From the descriptions and experiments preceding, which illustrate the development of storms, reference was made only to the winds blowing in toward the storm center. Naturally the question comes to your mind: What happens to them after the cold air has taken the place of the warm air? They change to other directions when the storm has passed away. It is because of this fact that we look for a change in weather conditions when the wind changes—a very important sign that you will be interested in later on.

It is well to mention here a thing that is going to be very important to us when we study the barometer, that is, the pressure of the atmosphere. Should the pressure of the air, which is normally at sea level 14.7 pounds to the square inch, change, that is, become lighter, it would not exert so much pressure on the column of mercury in the tube of the barometer and the mercury would drop in the tube. (See Fig. [7].) On the other hand, if the weight of the air was increased, that is, if it became heavier, it would force the mercury to rise in the tube. This should be quite clear to you, because it is the lightness and heaviness of the air that is going to interest us more particularly than any other part of the subject when we get into the study of the atmospheric changes, what causes them, and the indications that lead up to our conclusions. In order that this principle is absolutely clear to you, you should perform Experiment 4, or if you have not facilities for doing it, it is well to see it performed in any physics laboratory.

Immediately you ask yourself: If air has such a tremendous pressure as 14.7 pounds to the square inch, why is it that a weight of air amounting to thirty-five thousand pounds bearing down on the average individual does not cave the body in? Simply because air penetrates the body so easily that it exerts as much pressure on the inside as on the outside, and thereby equalizes itself. For instance, if you go down into a subway or a caisson (a water-tight box or chamber within which submarine construction is carried on under great air pressure to keep out the water), where the pressure is sometimes greater than it is outside, have you noticed the effect this pressure exerts on the ear drums? As it becomes greater, you may equalize it by swallowing, which allows the air to get back of the ear drums through the Eustachian tubes, which lead from the mouth to the inner ear.

MOISTURE