The living body, disaggregated by the histologist, resolves under the microscope into a dust, every grain of which is a cell. A cell is an anatomical element the constitution of which is the same from one part to the other of the same being, and from one being to another; and its dimensions, which are sensibly constant throughout the whole of the living world, have an average diameter of several thousandths of a millimetre—i.e., of several microns. This element, the cell, is a real organ. It is smaller, no doubt, than those described by the ancient anatomists, but it is not less complex. Its complexity is only revealed later. It is an organic unit. Its form varies from one element to another. Its substance is a semi-fluid mass, a mixture of different albuminoids. In the mean value of its dimensions, so carefully measured—exceptis excipiendis—we have a condition the significance of which has not yet been discovered, but which may be of great value in the explanation of its peculiar activities.
Such is the result to which have converged the researches of the biologists who have examined plants or the lower animals, as well as of the anatomists who have been more especially occupied with the vertebrates and with man. All their researches have brought them to the same conclusion—the cellular theory. Either living beings are composed of a single cell—as is the case with the microscopic animals called protozoa, and the microscopic vegetables called protophytes—or, they are cellular complexes, metazoa or metaphytes—that is to say, associations of these microscopic organic units which are called cells.
The Law of the Composition of Organisms.—The law of the composition of organisms was discovered in 1838 by Schleiden and Schwann. From that time up to 1875 it may be said that micrographers have spent their time in examining every organ and every tissue, muscular, glandular, conjunctive, nervous, etc., and in showing that in spite of their varieties of aspect and form, of the complexity of structures due to cohesion and fusion, they all resolve into the common element, the cell. Contemporary anatomists, Koelliker, Max Schultze, and Ranvier, have thus established the generality of the cellular constitution, while zoologists and botanists confirm the same law for all animals and vegetables, and exhibit them all as either unicellular or multicellular.
The Cellular Origin of Complex Beings.—At the same time embryogenic researches showed that all beings spring from a corpuscle of the same type. Going back in the history of their development to the most remote period, we find a cell of very constant constitution—namely, the ovule. This truth may be expressed by changing a word in Harvey’s celebrated aphorism—omne vivum ex ovo; we now say omne vivum e cellula. The myriads of differentiated anatomical elements whose association forms complex beings are the posterity of a cell, of the primordial ovule, unless they are the posterity of another equivalent cell. The second task of histology in the latter half of the nineteenth century consisted in following up the filiation of each anatomical element from the cell-egg to its state of complete development.
The whole cellular theory is contained in the two following statements, which establish the morphological unity of living beings:—Everything is a cell, everything comes from an initial cell; the cell being defined as a mass of substance, protoplasm or protoplasms, of an average diameter of a few microns.
§ 2. The Second Period: the Division Of the Cell.
Second Period: Constitution of the Cell.—This was, however, only the first phase in the analytical study of the living being. A second period began in 1873 with the researches of Strassburger, Bütschli, Flemming, Kuppfer, Fromann, Heitzmann, Balbiani, Guignard, Kunstler, etc. These observers in their turn submitted this anatomical, this infinitely small cellular microcosm, to the same penetrating dissection their predecessors had applied to the whole organism. They brought us down one degree lower into the abyss of the infinitely small. And as Pascal, losing himself in these wonders of the imperceptible, saw in the body of the mite which is only a point, “parts incomparably smaller, legs with joints, veins in the legs, blood in the veins, humours in the blood, drops in the humours, vapours in these drops,” so contemporary biologists have shown in the epitome of organism called a cell, an edifice which itself is marvellously complex.
The Cytoplasm.—The observers named above revealed to us the extreme complexity of this organic unit. Their researches have shown us the structure of the two parts of which it is composed—the cellular protoplasm and the nucleus. They have determined the part played by each in genetic multiplication. They have shown that the protoplasm which forms the body of the cell is not homogeneous, as was at first supposed. The idea which was mooted later, that this protoplasm was formed, to use Sachs’ words, of a kind of “protoplasmic mud,”—i.e., of a dust consisting of grains and granules connected by a liquid,—is no longer accurate. There is a much simpler view of the case. According to Leydig and his pupils, we must compare the protoplasm to a sponge in the meshes of which is lodged a fluid, transparent, hyaline substance, a kind of cellular juice, hyaloplasm. From the chemical point of view this cellular juice is a mixture of very different materials, albumens, globulins, carbohydrates, and fats, elaborated by the cell itself. It is a product of vital activity; it is not yet the seat of this activity. The living matter has taken refuge in the spongy tissue itself, in the spongioplasm.
According to other histologists, the comparison of protoplasm to a spongy mass does not give the most exact idea, and, in particular, it does not furnish the most general idea. It would be far better to say that the protoplasm possesses the structure of foam or lather. As was seen by Kunstler in 1880, a comparison with some familiar objects gives the best idea. Nothing could be more like protoplasm physically than the culinary preparation known as sauce mayonnaise, made with the aid of oil and a liquid with which oil does not mix. Emulsions of this kind were made artificially by Bütschli. He noted that these preparations mimicked all the aspects of cellular protoplasm. Thus, in the living cell there is a mixture of two liquids, non-miscible and of unequal fluidity. This mixture gives rise to the formation of little cells. The more consistent substance forms their supporting framework (Leydig’s spongioplasm), while the other, which is more fluid, fills its interior (hyaloplasm).
However that may be, whether the primitive organization of the cellular protoplasm be that of a sponge, as is asserted by Leydig, or that of a sauce mayonnaise, as is claimed by Bütschli and Kunstler, the complexity does not rest there. Further recourse must be made to analysis. Just as the tissue of a sponge, when torn, shows the fibres which constitute it, so the spongioplasm, the parietal substance, is exhibited as formed of a tangle of fibrils, or better still, of filaments or ribbons (in Greek, mitome), which are called chromatic filaments, because they are deeply stained when the cell is plunged into aniline dye. In each of these filaments, the substance of which is called chromatin, the devices of microscopic examination enable us to discover a series of granulations like beads on a string, the microsomes or bioblasts, connected one with the other by a sort of cement, Schwartz’s linin, which is a kind of nuclein.