No doubt the characteristics must be completed by the addition of a certain number of more subtle physical features.
One of them refers to the structure of protoplasm as revealed by the microscope. Throughout the whole of the living kingdom, from the bacteria studied by Kunstler and Busquet to the most complicated protozoa, protoplasmic matter presents the same constitution, and in consequence, this structure of the protoplasm must be considered as one of its distinctive characters. It is not homogeneous; it is not the last term of the visible organization: it is itself organized. Experiment shows that it does not resist breaking up or crushing. Mutilations cause it to lose its properties. As for the kind of structure that it presents, it may be expressed by saying that it is that of a foamy emulsion.
We saw above that our knowledge as to the physical condition of protoplasm has been completed by the theories of Bütschli’s micellæ or Pfeffer’s tagmata.
Properties of the Protoplasm. Its Affinity for Oxygen.—From the chemical point of view, living matter presents a very remarkable property—namely, a great affinity for oxygen. It absorbs it so greedily that the gas cannot remain in a free state in its neighbourhood. Living protoplasm, therefore, exercises a reducing power. But it does not absorb oxygen in this way for its own advantage; oxygen is not absorbed, as was supposed thirty years ago, to supply fuel wherewith to burn the protoplasm. The products are not those of its oxidation, of its own disintegration. They are the products of combustion of the reserve-stuff which is incorporated in it. These substances have been supplied to it from without, like the oxygen itself, with the blood. This was proved by G. Pflüger in 1872 to 1876. The protoplasm is only the focus, the scene, or the factor of combustion. It is not its victim, it does not itself furnish the fuel. It works like the chemist, who obtains a reaction with the substances that are given to him.
As for the reducing power of protoplasm, A. Gautier in 1881 and Ehrlich in 1890 have given fresh proofs. A. Gautier in particular has insisted that the phenomena of combustion take place, so to speak, outside the cell, and at the expense of the products which surround it; while on the contrary the really active and living parts of the nucleus and of the cellular body, work protected by the oxygen, as in the case of anaerobic microbes.
This result is of great importance. Burdon Sanderson, the late learned professor of physiology at the University of Oxford, has not hesitated to compare it to the discovery of respiratory combustion by Lavoisier. There is no doubt some exaggeration in the comparison; but there is, on the other hand, no less exaggeration in supposing that it is not of great importance. We may no longer in these days speak without reservation of the vital vortex of Cuvier, and of the incessant twofold movement of assimilation and dissimilation which is ever destroying living matter and building it up again. In reality, the living protoplasm varies very little; it only undergoes oscillations of very slight extent; it is the materials, the reserve stuff on which it operates, which are subject to continual transformations.
Chemical Composition of Protoplasm.—One of the the three characters attributed by Ch. Robin to living matter was its chemical composition, of which little was known in his time. He insisted on the constant presence in the living elements of three orders of immediate principles—proteid substances, carbohydrates, and fatty bodies. In reality the proteid substances, or albuminoids, alone are characteristic. The two other groups, carbohydrates and fatty bodies, are rather the signs and the products of the vital activity, than constituents of the matter on which it is exercised.
It is therefore on the knowledge of the proteid substances that all the sagacity of biological chemists has been exercised. Their efforts for thirty years, and particularly in the last few years, have not been barren; they enable us to give a first rough sketch of the constitution of these substances.
§ 1. The Characteristic Substances of the Protoplasm. The Nucleo-Proteids.
The Different Categories of Albuminoid Substances.—Albuminoid or proteid substances are extremely complex compounds, much more so than any of those which are being constantly studied by the chemist. They also are to be found in great variety. It has been difficult to separate them one from the other, to characterize them rigorously, or, in other words, to classify them. However, it has been done now, and we distinguish three classes which are differentiated at once from the physiological and from the chemical points of view. The first comprises the complete or typical albuminoids. They are the proteids or nucleo-albuminoids. They are to be found in the most active and most living parts of the protoplasm, and therefore in the spongioplasm of the cell and around the nucleus. The second group is formed of albumins and globulins, compounds already simpler, fragments derived from the destruction of the preceding, into which they enter as constituent elements. In the isolated state they do not belong to the really living protoplasm; they exist in the cellular juice, in the interstitial and circulating liquids in the blood and in the lymph. The third category comprises real but incomplete albuminoids. They are to be found in the portions of the economy which have a specialized or attenuated life, and are destined to serve as a support to the more active elements—i.e., they contribute to the building up of the bony, cartilaginous, conjunctive, elastic tissues. They are called albumoids. It is naturally the first group, that of the proteids—i.e., of the complete and characteristic compounds of the living substance—upon which the attention of the physiologists must be fixed. It is only quite recently that the clear definition of these substances has been given, and proteid compounds detected in the confused mass.