§ 1. Specific form and chemical constitution—The wide distribution of crystalline forms—Organization of crystals—Law of relation between specific form and chemical constitution—Value of form as a characteristic of brute and living beings—Parentage, living beings and mineral parentage—Iso-morphism and the faculty of cross-breeding—Other analogies. § 2. Acquisition and re-establishment of the specific form—Mutilation and regeneration of crystals—Mechanism of reparation.
§ 1. Specific Form and Chemical Constitution.—In the enumeration which we have made of the essential features of vitality there are three that are, so to speak, of the highest value. They are, in the order of their importance:—The possession of a specific form; the faculty of growth or nutrition; and finally, the faculty of reproduction by generation. By restricting our comparison between brute bodies and living bodies to these truly fundamental characters we sensibly restrict the field, but we shall see that it does not disappear.
Wide Distribution of Crystalline Forms.—The consideration of specific forms shows us that in the mineral world we need only consider crystallized bodies, as they are almost the only ones that possess definite form. In restricting ourselves to this category we do not limit our field as much as might be supposed. Crystalline forms are very widely distributed. They are, in a measure, universal. Matter has a decided tendency to assume these forms whenever the physical forces which it obeys act with order and regularity, and when their action is undisturbed by accidental occurrences. In the same way, too, living forms are only possible in regulated environments, under normal conditions, protected from cataclysms and convulsions of nature.
The possession of a specific form is the most significant feature of an organized being. Its tendency, from the time it begins to develop from the germ, is toward the acquirement of that form. The progressive manner in which it seeks to realize its architectural plan in spite of the obstacles and difficulties that arise—healing its wounds, repairing its mutilations—all this, in the eyes of the philosophical biologist, forms what is perhaps the most striking characteristic of a living being, that which best shows its unity and its individuality. This property of organogenesis seems pre-eminently the vital property. It is not so, however, for crystalline bodies possess it in an almost equal degree.
The parallel between the crystal and a living being has been often drawn. I will not reproduce it here in detail. My sole desire, after sketching its principal features, is to call attention to the new information that has been brought out by recent investigations.
Organization of Crystals. Views of Haüy, Delafosse, Bravais, and of Wallerant.—In botany, zoology, and crystallography we understand by form an assemblage of material constituents co-ordinated in a definite system—i.e., the organization itself. The body of man, for example, is an edifice in which sixty trillion cells ought each to find its own predetermined place.
In crystallography also we understand by form the organization which crystals present. The grouping of the elements of crystals is, perhaps, more simple. They are none the less organized, in the same sense that living bodies are.
Their organization, while more uniform than that of living bodies, still shows a considerable amount of variation. It should not be assumed that the area of a crystal is completely filled, with contiguous parts applied one to the other by plane faces, as might be supposed from the phenomenon of cleavage which dissociates the parts of the crystalline body into solids of this kind. In reality, the constituent parts are separated from each other by spaces. They are arranged in a quincunx, as Haüy put it, or along the lines of a network, to use the terms of Delafosse and Bravais. The intervals left between them are incomparably larger than their diameters. So that in the organization of a crystal it is necessary to take into account two quite different things:—An element, the crystalline particle, which is a certain aggregate of chemical molecules having a determinate geometrical form; and a more or less regular, parallelopipedic network, along the edges of which are arranged in a constant and definite manner the aforesaid particles. The external form of the crystal indicates the existence of the network. Its optical properties depend upon the action of the particles, as Wallerant has shown: Thus we must distinguish in a crystal between two kinds of geometrical figures—that of the network and that of the particle—and their characters of symmetry may be either concordant or discordant.
The crystalline particle, the element of the crystal, is therefore a certain molecular complex that repeats itself identically and is identically placed at the nodes of the parallelopipedic network. It has been given different names well calculated to produce confusion-the crystallographic molecule of Mallard, the complex particle of other authors. Some have separated this element into subordinate elements (the fundamental particles of Wallerant and of Lapparent).
These very general outlines will suffice to show how complex and adjustable is the organization of the crystalline individual, which in spite of its geometric regularity and its rigidity, may be compared with the still more flexible organization of the living element. The mineral individual is more stable, more labile—i.e., less prone to undergo change than is the living individual. We may say with M. Lapparent that “crystallized matter presents the most perfect and stable orderly arrangement of which the particles of bodies are susceptible.”