Fig. 25.—Octahedra of Cæsium Alum.
Cubic Crystals growing from Solution.

We have thus attained at length to a truly scientific classification of crystal forms, by using axes and planes of symmetry as criteria. There is no occasion whatever to imagine suppression of faces in the classes of lower than the holohedral or highest symmetry of any system. In these classes it is simply the fact that less than the full number of elements of symmetry possible to the system are present and characterise the class, which still conforms, however, to the minimum symmetry absolutely essential to the system.

The drawings of crystals of the seven systems in the foregoing illustrations will have given a correct idea of the nature of the symmetry in each case. But now it may be much more interesting to present a series of reproductions of photographs of some actual crystals of the different systems. Such a series is given in Figs. 24 to 33, Plates IV. to VIII. They were taken with the aid of the microscope, the substances being crystallised from a slightly supersaturated solution in each case, on a microscope slip. A ring of gold size was first laid on the slip, and allowed to dry for several days. The drop of solution, in the metastable supersaturated condition (corresponding to the region of solubility which lies between the solubility and supersolubility curves, Fig. 98, page [240]), was placed in the middle of the ring, and crystallisation just allowed to start, either owing to evaporation and consequent production of the labile condition for spontaneous crystallisation, or by access of a germ crystal from the air. It was then covered with a cover-glass, which had the desired effect of enclosing the solution in a parallelsided cell, a film of the thickness of thick paper, suitable for undistorted microscopic observation and photomicrography, and also the effect of arresting evaporation and therefore the rapidity of the growth of the crystals, so that a photomicrograph taken with the minimum necessary exposure was quite sharp.

The crystals shown in the accompanying photographic reproductions, Figs. 24 to 33 (Plates IV. to VIII.), as well as Fig. 4 (Plate II.), already described, were thus photographed in the very act of slow growth, employing a one-inch objective very much stopped down. Such photographs are infinitely sharper and more beautifully and delicately shaded than those taken of dry crystals.

Fig. 24, Plate IV., represents cubic octahedra of the double cyanide of potassium and cadmium, 2KCN.Cd(CN)2, a salt which crystallises out in relatively large and wonderfully transparent and well-formed single octahedra on a micro-slip, and is particularly suitable for demonstrating the character of this highest system, the cubic, of crystal symmetry. Special development of the pair of faces of the octahedron parallel to the glass surfaces has occurred, owing to greater freedom of growth at the boundaries of these faces, as is usual in such circumstances of deposition, but the other pairs of faces are quite large enough to show their nature clearly.

Fig. 25, on the same Plate IV., shows a slide of cæsium alum, Cs2SO4.Al2(SO4)3.24H2O, in which the octahedra are smaller, and some of them, notably one in the centre of the field, are perfectly proportioned.

PLATE V.
Fig. 26.—Octahedra of Ammonium Iron Alum crystallising on a Hair.

Fig. 27.—Tetragonal Crystals of Potassium Ferrocyanide.
Crystals growing from Solution.