Fig. 39.—Tetragonal Prism and its three Rectangular Axes.

If the crystal belong to the cubic, tetragonal, or rhombic systems, for instance, three faces meeting each other rectangularly are possible planes on the crystal, and will very frequently be found actually developed; such would obviously be chosen as the axial planes. The edges of the cube, or of the tetragonal or rectangular rhombic prism, will be the directions of the crystallographic axes in this case, and we can imagine them moved parallel to themselves until the common centre of intersection, the “origin” of the analytical geometrician, will occupy the centre of the crystal, and the faces of the latter be built up symmetrically about it. When the crystal is cubic, the three axes will be of equal length as shown in Fig. 38; if tetragonal, the two horizontal axes will be equal, but will differ in length from the vertical axis, as represented in Fig. 39. If the crystal be rhombic, all three axes will be of different lengths, as indicated in Fig. 40, which represents the axes and axial planes of an actual rhombic substance, topaz, for which the lateral axis b and vertical axis c are nearly but not quite equal, while the front-and-back axis a is very different.

When the crystal is of monoclinic symmetry, as in Fig. 41, three axes will similarly be found as the intersection of three principal parallel pairs of faces, but two of them will be inclined at an angle other than 90° to each other, while the third, the lateral one in Fig. 41, will be at right angles to those first two and to the plane containing them; moreover, all three are unequal in length. In the case of a triclinic crystal, shown in Fig. 42, however, there can be no right angles, and the intersections of three important faces meeting each other at angles as near 90° as possible are chosen as the axes, regard being had to both factors of approximation to rectangularity and importance of development. These triclinic axes are the most general type of crystal axes, for not only are the angles not right angles, but the lengths of the axes are also unequal.

Fig. 40.—Axial Planes of a Rhombic Crystal.

Fig. 41.—Axial Planes of a Monoclinic Crystal.

Fig. 42.—Axial Planes of a Triclinic Crystal.