Another remarkable piece of crystallographic work, this time in the optical domain, which has rendered the name of Mitscherlich familiar, was his discovery of the phenomenon of crossed-axial-plane dispersion of the optic axes in gypsum. (The nature and meaning of “optic axes” will be explained in Chapter XIII., page [185].) During the course of a lecture to the Berlin Academy in the year 1826 Mitscherlich, always a brilliant lecturer and experimenter at the lecture table, exhibited an experiment with a crystal of gypsum (selenite) which has ever since been referred to as the “Mitscherlich experiment.” He had been investigating the double refraction of a number of crystalline substances at different temperatures, and had observed that gypsum, hydrated calcium sulphate, CaSO4.2H2O, was highly sensitive in this respect, especially as regards the position of its optic axes. At the ordinary temperature it is biaxial, with an optic axial angle of about 60°, but on heating the crystal the angle diminishes, until just above the temperature of boiling water the axes become identical, as if the crystal were uniaxial, and then they again separate as the temperature rises further, but in the plane at right angles to that which formerly contained them; hence the phenomenon is spoken of as “crossed-axial-plane dispersion.” Mitscherlich employed a plate of the crystal cut perpendicularly to the bisectrix of the optic axial angle, and showed to the Academy the interference figures (see Plate XII.) which it afforded in convergent polarised light with rising temperature. At first, for the ordinary temperature, the usual rings and lemniscates surrounding the two optic axes were apparent at the right and left margins of the field; as the crystal was gently heated (its supporting metallic frame being heated with a spirit lamp) the axes approached each other, with ever changing play of colour and alteration of shape of the rings and lemniscates, until eventually the dark hyperbolic brushes, marking by their well defined vertices the positions of the two optic axes within the innermost rings, united in the centre of the field to produce the uniaxial dark rectangular cross; the rings around the centre had now become circles, the lemniscates having first become ellipses which more and more approximated, as the temperature rose, to circles. Then the dark cross opened out again, and the axial brushes separated once more, but in the vertical direction, and the circles became again first ellipses and then lemniscates, eventually developing inner rings around the optic axes; if the source of heat were not removed at this stage the crystal would suddenly decompose, becoming dehydrated, and the field on the screen would become dark. If, however, the spirit lamp were removed before this occurred, the phenomena were repeated in the reverse order as the crystal cooled.
This beautiful experiment is now frequently performed, as gypsum is perhaps the best example yet known which exhibits the phenomenon of crossed-axial-plane dispersion by change of temperature alone. A considerable number of other cases are known, such as brookite, the rhombic form of titanium dioxide TiO2, and the triple tartrate of potassium, sodium, and ammonium, but these are more sensitive to change of wave-length in the illuminating light than to change of temperature.
Fig. 51.—The Mitscherlich Experiment with Gypsum.
PLATE XII.
Fig. 52.—Appearance of the Interference Figure half a Minute after commencing the Experiment. Temperature of Crystal about 40° C.
Fig. 53.—Appearance a Minute or so later, the Axes approaching the Centre. Temperature of Crystal about 85° C.
Fig. 54.—The Two Optic Axes coincident in the Centre of the Figure, two or three Minutes from the commencement. Temperature of Crystal 106° C.