(INCLUDING LIQUID CRYSTALS)

CHAPTER I
INTRODUCTION.

It is a remarkable fact that no definition of life has yet been advanced which will not apply to a crystal with as much veracity as to those obviously animate objects of the animal and vegetable world which we are accustomed to regard in the ordinary sense as “living.” A crystal grows when surrounded by a suitable environment, capable of supporting it with its natural food, namely, its own chemical substance in the liquid or vaporous state or dissolved in a solvent. Moreover, when a crystal is broken, and then surrounded with this proper environment, it grows much more rapidly at the broken part than elsewhere, repairing the damage done in a very short space of time and soon presenting the appearance of a perfect crystal once more. In this respect it is quite comparable with animal tissue, the wonderful recuperative power of which after injury, exhibited by special growth at the injured spot, is often a source of such marvel to us. Indeed, a crystal may be broken in half, and yet each half in a relatively very brief interval will grow into a crystal as large as the original one again. The longevity and virility of the spores and seeds of the vegetable kingdom have been the themes of frequent amazement, although many of the stories told of them have been unable to stand the test of strict investigation. The virility of a crystal, however, is unchanged and permanent.

A crystal of quartz, rock-crystal, for instance—detached, during the course of the disintegration of the granitic rock of which it had originally formed an individual crystal, by the denuding influences at work in nature thousands of years ago, subsequently knocked about the world as a rounded sand grain, blown over deserts by the wind, its corners rounded off by rude contact with its fellows, and subjected to every variety of rough treatment—may eventually in our own day find itself in water containing in solution a small amount of the material of which quartz is composed, silicon dioxide SiO2. No sooner is this favourable environment for continuing its crystallisation presented to it, than, however old it may be, it begins to sprout and grow again. It becomes surrounded in all probability by a beautiful coating of transparent quartz, with exterior faces inclined at the exact angles of quartz, although no sign of exterior faces had hitherto persisted through all the stages of its varied adventures. Or it may grow chiefly at two or three especially favourable places, and in the course of a few weeks, under suitable conditions, at each place a perfect little quartz crystal will radiate out from the sand grain, composed of a miniature hexagonal prism terminated by the well-known pyramid, really consisting of a pair of trigonal (rhombohedral) pyramids more or less equally developed, and together producing an apparently hexagonal one. Four such grains of sand, from which quartz crystals are growing, are shown in Fig. 1, as they appear under a microscope magnifying about fifty diameters. One of them shows a perfectly developed doubly terminated crystal of quartz growing from the tip of a singly terminated one, attached to and growing directly out of the grain.

Fig. 1.—Sand Grains with Quartz Crystals growing from them.

This marvellously everlasting power possessed by a crystal, of silent imperceptible growth, that is, of adding to its own regular structure further accretions of infinitesimal particles, the chemical molecules, of its own substance, is one of the strangest functions of solid matter, and one of the fundamental facts of science which is rarely realised, compared with many of the more obvious phenomena of nature.

A crystal in the ordinary sense of the word is solid matter in its most perfectly developed and organised form. It is composed of the chemical molecules of some definitely constituted substance, which have been laid down in orderly sequence, in accordance with a specific architectural plan peculiar to that particular chemical substance. The physical properties of the latter are such that it assumes the solid form at the ordinary temperature and pressure, leaving out of consideration for the present the remarkable viscous and liquid substances which will be specially dealt with in Chapter XVI. of this book, and which are currently known as “liquid crystals.” This term is not perhaps a very appropriate one. For the word “crystal” had much better be left to convey the idea of rigidity of polyhedral form and internal structure, which is the very basis of crystal measurement.

The solid crystal may have been produced during the simple act of congealment from the liquid state, on the cooling of the heated liquefied substance to the ordinary temperature. Sulphur, for instance, is well-known to crystallise in acicular crystals belonging to the monoclinic system under such conditions, a characteristic crop being shown in Fig. 2 (Plate I.); they were formed within an earthenware crucible in which the fusion had occurred, and became revealed on pouring out the remainder of the liquid sulphur when the crystallisation had proceeded through about one-half of the original amount of the “melt.”