Fig. 88.—Artificial Biquartz, the two parts being obliquely joined in order to produce the Black Band.
Direct Photographs of Pictures projected on the Screen by the Lantern Polariscope, using Parallel Light.
When the obliquity is greater, or the crystal thicker, a white band appears on each side of the black central one, the Nicols being crossed, and when the thickness is as great as 6 to 7.5 mm. a spectrum band appears on each side of the white one.
That this obliquity of the surface of contact of the two intergrown individuals (not the plane of twinning, which remains parallel to a pair of faces of the hexagonal prism of the second order) is the true explanation can be readily proved by reproducing the effect artificially. A thick double plate of quartz is constructed, as shown in Fig. 88, composed of two halves of respectively right-handed and left-handed quartz, each 6 to 7 millimetres thick, and each of which has had the edge-face of junction ground and polished obliquely at an angle of 30° or so, and oppositely so, instead of perpendicularly to the plates; the two halves are then cemented together in the usual manner for a biquartz, with Canada balsam, in order to make a continuous plate. On placing the plate of this construction possessed by the author on the stage of the projection polariscope, the two halves exhibit on the screen respectively brilliant red and green colour, with a vertical central black band, and on each side of it first a white strip and then a spectrum band, all the bands being parallel to each other, and the whole effect being precisely what was observed with the thickest natural biquartz.
Thus, we have imitated the oblique junction of the twin parts of the second and third biquartzes, and proved that this obliquity is the reason for the phenomena of bands, the black band occupying the centre where the two opposite rotations of the right and left quartz are precisely neutralised. The dark field of the crossed Nicols consequently prevails along this central strip, for the rotatory effect of the first individual crystal on the light passing through it is exactly undone by the subsequent passage of the rays through the other individual. On either side of this neutral strip there is a little preponderance of right-handed quartz on one side, and of left-handed quartz on the other, and the usual effect of a thin plate of quartz is therefore seen, namely, no colour but a little light, while further accretions of thickness of the preponderating variety give all the colours of the spectrum in turn, as with growing thicknesses of ordinary single quartz plates, thus producing the spectrum band.
The black band is also afforded when the plate is cut somewhat obliquely, out of a twin crystal with a junction plane truly perpendicular to the equatorial section, instead of cutting it truly perpendicularly to the axis, the junction plane being then oblique to the plate. The polarisation colours are not so strong, however, unless the plate be made thicker.
PLATE XVIII.
Fig. 89.—Black Central Band and equidistant Spectrum Bands on each side, afforded by Babinet’s Composite Plate of two Quartz Wedges, one parallel and the other perpendicular to the Axis. (Direct Photograph of Screen Picture as projected by Lantern Polariscope.)
Fig. 94.—Section-plate of Amethyst, natural size, as seen directly in Ordinary Light, showing Alternate Violet Sectors (see p. [223]).
This effect of a black band with flanking spectra is very similar to that obtained, due to double refraction and not to optical activity, when two thin wedges of quartz are cemented together to form a parallel plate, one wedge being cut so that the optic axis is parallel to the edge of the wedge, and the other with the optic axis perpendicular to the edge. When such a composite plate of quartz, often known as a Babinet plate from the name of its first constructor, is placed on the stage of the polariscope, and rotated to the 45° position with respect to the planes of vibration of the crossed Nicols, there is observed on the screen a deep black band in the centre parallel to the edge of the wedge, and a number of spectrum bands on each side, separated by white equal interspaces, the rainbow coloured bands showing the orders of Newton’s spectra. The effect, as seen on the screen, is reproduced photographically in black and white in Fig. 89, Plate XVIII.