In his “Crystallographie,” published in Paris in 1783, Romé de l’Isle described a very large number of naturally occurring mineral crystals, and after measuring their angles with Carangeot’s goniometer he constructed models of no less than 500 different forms. Here we have work based upon sound measurement, and consequently of an altogether different and higher value than that which had gone before. It was the knowledge that his master desired to faithfully reproduce the small natural crystals which he was investigating, on the larger scale of a model, that led Carangeot to invent the contact goniometer, and thus to make the first start in the great subject of goniometry. The principle of the contact goniometer remains to-day practically as Carangeot left it, and although replaced for refined work by the reflecting goniometer, it is still useful when large mineral crystals have to be dealt with. An illustration of a duplicate of the original instrument is shown in Fig. 11, by the kindness of Dr H. A. Miers. This duplicate was presented to Prof. Buckland by the Duke of Buckingham in the year 1824, and is now in the Oxford Museum.

From the time that measurement of an accurate description was possible by means of the contact goniometer, progress in crystallography became rapid. Romé de l’Isle laid down the sound principle, as the result of the angular measurements and the comparison of his accurate models with one another, that the various crystal shapes developed by the same substance, artificial or natural, were all intimately related, and derivable from a primitive form, characteristic of the substance. He considered that the great variety of form was due to the development of secondary faces, other than those of the primitive form. He thus connected together the work of previous observers, consolidated the principles laid down by Guglielmini by measurements of real value, and threw out the additional suggestion of a fundamental or primitive form.

About the same time Werner was studying the principal forms of different crystals of the same substance. The idea of a fundamental form appears to have struck him also, and he showed how such a fundamental form may be modified by truncating, bevelling, and replacing its faces by other derived forms. His work, however, cannot possess the value of that of Romé de l’Isle, as it was not based on exact measurement, and most of all because Werner appears to have again admitted the fallacy that the same substance could, in the ordinary way, and not in the sense now termed polymorphism, exhibit several different fundamental forms.

But a master mind was at hand destined definitely to remove these doubts and to place the new science on a firm basis. An account of how this was achieved is well worthy of a separate chapter.

CHAPTER III
THE PRESCIENT WORK OF THE ABBÉ HAÜY.

The important work of Romé de l’Isle had paved the way for a further and still greater advance which we owe to the University of Paris, for its Professor of the Humanities, the Abbé Réné Just Haüy, a name ever to be regarded with veneration by crystallographers, took up the subject shortly after Romé de l’Isle, and in 1782 laid most important results before the French Academy, which were subsequently, in 1784, published in a book, under the auspices of the Academy, entitled “Essai d’une Théorie sur la Structure des Crystaux.” The author happens to possess, as the gift of a kind friend, a copy of the original issue of this highly interesting and now very rare work. It contains a brief preface, dated the 26th November 1783, signed by the Marquis de Condorcet, perpetual secretary to the Academy (who, in 1794, fell a victim to the French revolution), to the effect that the Academy had expressed its approval and authorised the publication “under its privilege.”

The volume contains six excellent plates of a large number of most careful drawings of crystals, illustrating the derivation from the simple forms, such as the cube, octahedron, dodecahedron, rhombohedron, and hexagonal prism, of the more complicated forms by the symmetrical replacement of edges and corners, together with the drawings of many structural lattices. In the text, Haüy shows clearly how all the varieties of crystal forms are constructed according to a few simple types of symmetry; for instance, that the cube, octahedron, and dodecahedron all have the same high degree of symmetry, and that the apparently very diverse forms shown by one and the same substance are all referable to one of these simple fundamental or systematic forms. Moreover, Haüy clearly states the laws which govern crystal symmetry, and practically gives us the main lines of symmetry of five of the seven systems as we now classify them, the finishing touch having been supplied in our own time by Victor von Lang.

Haüy further showed that difference of chemical composition was accompanied by real difference of crystalline form, and he entered deeply into chemistry, so far as it was then understood, in order to extend the scope of his observations. It must be remembered that it was only nine years before, in 1774, that Priestley had discovered oxygen, and that Lavoisier had only just (in the same year as Haüy’s paper was read to the Academy, 1782) published his celebrated “Elements de Chimie”; and further, that Lavoisier’s memoir “Reflexions sur le Phlogistique” was actually published by the Academy in the same year, 1783, as that in which this book was written by Haüy. Moreover, it was also in this same year, 1783, that Cavendish discovered the compound nature of water.

Considering, therefore, all these facts, it is truly surprising that Haüy should have been able to have laid so accurately the foundations of the science of crystallography. That he undoubtedly did so, thus securing to himself for all time the term which is currently applied to him of “father of crystallography,” is clearly apparent from a perusal of his book and of his subsequent memoirs.

The above only represents a small portion of Haüy’s achievements. For he discovered, besides, the law of rational indices, the generalisation which is at the root of crystallographic science, limiting, as it does, the otherwise infinite number of possible crystal forms to comparatively few, which alone are found to be capable of existence as actual crystals. The essence of this law, which will be fully explained in Chapter V., is that the relative lengths intercepted along the three principal axes of the crystal, by the various faces other than those of the fundamental form, the faces of which are parallel to the axes, are expressed by the simplest unit integers, 1, 2, 3, or 4, the latter being rarely exceeded and then only corresponding to very small and altogether secondary faces.