[(97)] This gives a slanting circuit joining all the branch ends of the color tree, and has been likened to the rings of Saturn in Chapter I., paragraph [17].
A prismatic color sphere.
[(98)] With a little effort of the imagination we can picture a prismatic color sphere, using only the colors of light. In a cylindrical chamber is hung a diaphanous ball similar to a huge soap bubble, which can display color on its surface without obscuring its interior. Then, at the proper points of the surrounding wall, three pure beams of colored light are admitted,—one red, another green, and the third violet-blue.
[(99)] They fall at proper levels on three sides of the sphere, while their intermediate gradations encircle the sphere with a complete spectrum plus the needed purple. As they penetrate the sphere, they unite to balance each other in neutrality. Pure whiteness is at the top, and, by some imaginary means their light gradually diminishes until they disappear in darkness below.
[(100)] This ideal color system is impossible in the present state of our knowledge and implements. Even were it possible, its immaterial hues could not serve to dye materials or paint pictures. Pigments are, and will in all probability continue to be, the practical agents of coloristic productions, however reluctant the scientist may be to accept them as the basis of a color system. It is true that they are chemically impure and imperfectly represent the colors of light. Some of them fade rapidly and undergo chemical change, as in the notable case of a green pigment tested by this measured system, which in a few weeks lost four steps of chroma, gained two steps of value, and swung into a bluer hue.
[(101)] But the color sphere to be next described is worked out with a few reliable pigments, mostly natural earths, whose fading is a matter of years and so slight as to be almost imperceptible. Besides, its principal hues are preserved in safe keeping by imperishable enamels, which can be used to correct any tendency of the pigments to distort the measured intervals of the color sphere.
This meets the most serious objection to a pigment system. Without it a child has nothing tangible which he can keep in constant view to imitate and memorize. With it he builds up a mental image of measured relations that describe every color in nature, including the fleeting hues of the rainbow, although they appear but for a moment at rare intervals. Finally, it furnishes a simple notation which records every color sensation by a letter and two numerals. With the enlargement of his mental power he will unite these in a comprehensive grasp of the larger relations of color.
[20.] See Rood, Chapter VII., on Color by Absorption.
[21.] See Micron in Glossary.