Brewster’s mistaken theory underlies these schemes, as is also the case with Froebel’s gifts, whose color balls continue to give wrong notions at the very threshold of color education. As pointed out in the [Appendix to Chapter III.], the “red-yellow-blue” theory inevitably spreads the warm field of yellow-red too far, and contracts the blue field, so that balance of color is rendered impossible, as illustrated in the gaudy chromo and flaming bill-board.

These schemes are criticised by Rood as “not only in the main arbitrary, but also vague”; and, although Chevreul’s charts were published by the government in most elaborate form, their usefulness is small. Interest in the growth of the present system, because of its measured character, led Professor Rood to give assistance in the tests, and at his request a color sphere was made for the Physical Cabinet at Columbia.

[ Chapter VI.]
COLOR NOTATION.

Suggestion of a chromatic score.

[(132)] The last chapter traced a series of steps leading to the construction of a practical color sphere. Each color was tested by appropriate instruments to assure its degree of hue, value, and chroma, before being placed in position. Then the total sphere was tested to detect any lack of balance.

[(133)] Each color was also written by a letter and two numerals, showing its place in the three scales of hue, value, and chroma. This naturally suggests, not only a record of each separate color sensation, but also a union of these records in series and groups to form a color score, similar to the musical score by which the measured relations of sound are recorded.

[(134)]

[(135)] The transparent envelope is thus divided into one hundred compartments, which provide for ten steps of value in each of the ten middle colors. Now, if we cut open this envelope along one of the verticals,—as, for instance, red-purple (RP), it may be spread out, making a flat chart of the color sphere (Fig. 22).

Why green is given the centre of the score.