SERIES IX

The "sheath" splash of a smooth sphere.

1
T = 0

2
0·002 sec.

3
0·013 sec.

4
0·024 sec.

5
0·039 sec.

6

Examination of either Series IX or Series X shows that with the smooth sphere as with the rough the amount of water lifted above the surface in the immediate neighbourhood of the splash is much less than the whole volume displaced, so that we are again driven to the conclusion that the surface at even a considerable distance must be bodily lifted without its flatness being sensibly disturbed. This conclusion was confirmed by a direct experiment. The not very wide vessel of Fig. A was taken and filled brimful with milk, and the lower edge of a card millimetre scale was placed just in contact with the liquid surface at one side. The reader should notice that the liquid is not quite up to the level of the spout on the right-hand side of this figure. Then the sphere was dropped in and the photograph of Fig. B was taken when the sphere was about two-thirds immersed. The rise at the edge of the scale is about 3 millimetres, and there is an apparently equal rise at the spout, where, however, the surface appears quite flat.

Fig. AFig. B

It seems probable, then, that whenever a stone is thrown into a lake the impulse accompanying its entry travels with the velocity of a compressional wave (i.e. with the velocity of sound) through the liquid, and is therefore almost instantly felt and produces a minute rise of level even in remote parts of the lake long before the arrival of any ripple or surface disturbance.

SERIES X

Polished serpentine sphere falling 14 cm. into water.

1
0·003 sec.
2
0·006 sec.