THE WEIGHT OF HYDROGEN

Before we describe the Zeppelin airships and the means by which they were eventually overcome, we must know something about the principles of balloons. Every one knows that balloons are kept up in the air by means of a very light gas, but somehow the general public fails to understand why the gas should hold it up. Some people have a notion that there is something mysterious about hydrogen gas which makes it resist the pull of gravity, and that the more hydrogen you crowd into the balloon the more weight it will lift. But hydrogen has weight and feels the pull of gravity just as air does, or water, or lead. The only reason the balloon rises is because it weighs less than the air it displaces. It is hard to think of air as having weight, but if we weigh air, hydrogen, coal-gas, or any other gas, in a vacuum, it will tip the scales just as a solid would. A thousand cubic feet of air weighs 80 pounds. In other words, the air in a room ten feet square with a ceiling ten feet high, weighs just about 80 pounds. The same amount of coal-gas weighed in a vacuum would register only 40 pounds; while an equal volume of hydrogen would weigh only 5½ pounds. But when we speak of volumes of gas we must remember that gas, unlike a liquid or a solid, can be compressed or expanded to almost any dimensions. For instance, we could easily fill our room with a ton of air if the walls would stand the pressure; or we could pump out the air, until there were but a few ounces of air left. But in one case the air would be so highly compressed that it would exert a pressure of about 375 pounds on every square inch of the wall of the room, while in the other case its pressure would be almost infinitesimal. But 80 pounds of air in a room of a thousand cubic feet would exert the same pressure as the atmosphere, or 15 pounds on every square inch. And when we say that a thousand cubic feet of hydrogen weighs only a little over 5 pounds, we are talking about hydrogen at the same pressure as the atmosphere.

Since the hydrogen is sixteen times lighter than air, naturally it will float in the air, just as a piece of wood will float in water because it is lighter than the same volume of water. If we surrounded the thousand cubic feet of hydrogen with a bag so that the gas will not diffuse into the air and mix with it, we shall have a balloon which would float in air provided the bag and the hydrogen it contains do not weigh more than eighty pounds. As we rise from the surface of the earth, the air becomes less and less dense, or, in other words, it becomes lighter, and the balloon will keep on rising through the atmosphere until it reaches a point at which its weight, gas-bag and all, is exactly the same as that of an equal volume of air.

But there are many conditions that affect the height to which the balloon will ascend. The higher we rise, the colder it is apt to become, and cold has a tendency to compress the hydrogen, collapsing the balloon and making it relatively heavier. When the sun beats upon a balloon, it heats the hydrogen, expanding it and making it relatively lighter, and if there is no room for this expansion to take place in the bag, the bag will burst. For this reason, a big safety-valve must be provided and the ordinary round balloon is open at the bottom so that the hydrogen can escape when it expands too much and the balloonist carries ballast in the form of sand which he can throw over to lighten the balloon when the gas is contracted by a sudden draft of cold air.

Although a round balloon carries no engine and no propeller, it can be guided through the air to some degree. When an aëronaut wishes to go in any particular direction, he sends up his balloon by throwing out ballast or lowers it by letting out a certain amount of gas, until he reaches a level at which he finds a breeze blowing in the desired direction. Such was the airship of Civil War times, but for military purposes it was not advisable to use free balloons, because of the difficulty of controlling them. They were too liable to fall into the hands of the enemy. All that was needed was a high observation post from which the enemy could be watched, and from which observations could be reported by telegraph. The balloon was not looked upon as a fighting-machine.

ZEPPELIN'S FAILURES AND SUCCESSES

But Count Zeppelin was a man of vision. He dreamed of a real ship of the air—a machine that would sail wherever the helmsman chose, regardless of wind and weather. Many years elapsed before he actually began to work out his dreams, and then he met with failure after failure. He believed in big machines and the loss of one of his airships meant the waste of a large sum of money, but he persisted, even though he spent all his fortune, and had to go heavily in debt. Every one thought him a crank until he built his third airship and proved its worth by making a trip of 270 miles. At once the German Government was interested and saw wonderful military possibilities in the new craft. The Zeppelin was purchased by the government and money was given the inventor to further his experiments.

That was not the end of his failures. Before the war broke out, thirteen Zeppelins had been destroyed by one accident or another. Evidently the building of Zeppelin airships was not a paying undertaking, although they were used to carry passengers on short aërial voyages. But the government made up money losses and Zeppelin went on developing his airships.

Of course, he was not the only one to build airships, nor even the first to build a dirigible. The French built some large dirigibles, but they failed to see any great military advantage in ships that could sail through the air, particularly after the airplane was invented, and so it happened that when the war started the French were devoting virtually all their energies to the construction of speedy, powerful airplanes. As for the British, they did not pay much attention to airships. The idea that their isles might be attacked from the sky seemed an exceedingly remote possibility.