The morphology and general relations of the salivary glands have been sketched out by Hatschek, Patten, and by Lucas, from observations on those of the case-worms or larval Trichoptera.

Fig. 330.—Eight pairs of glands of Andrena: I, thoracic; II, postcerebral; III, supracerebral; IV, lateropharyngeal; V, mandibular; VI, internomandibular; VII, sublingual; VIII, lingual; Md, mandible; L, tongue; o, eye; œ, œsophagus; J, honey-sac.—After Bordas.

Patten states that the spinning-glands in Neophylax are formed by a pair of ectodermal invaginations on the ventral side of the embryo, between the base of the 2d maxillæ and the nervous cord. They increase rapidly in length, and “they also unite to form a common duct, which opens at the end of the upper lip.”

The salivary glands in the same insect are “formed by invagination of the ectoderm on the inner sides of the mandibles, in the same manner as are the spinning glands.”

Lucas has shown that in trichopterous larvæ (Anabolia) there are three pairs of salivary glands in the head, which are serially arranged. The first pair belong to the mandibular, the second pair to the 1st maxillary, and the third pair, or spinning glands, to the 2d maxillary segment. The first or mandibular glands open into the mouth at the base of the mandibles directly behind the dorsal condyle. The second pair open between the 1st and 2d maxillæ; at the base of the latter, near the ventral condyle of the mandibles. The third pair open into the hypopharynx, which is modified to form the spinneret. Lucas agrees with Korschelt in regarding them as modified coxal glands, Schiemenz having previously regarded the headglands of the imago of the bee as belonging to the segments bearing the three pairs of buccal appendages, so that each segment originally contained a pair of glands. It is thus proven that the silk-glands are modified salivary glands adapted to the needs of spinning larvæ, and indeed in the imago the sericteries revert to their primitive shape and use as salivary glands.

The serial arrangement of the salivary glands in the Hymenoptera, where the number varies from five to ten pairs, is clearly proved by Bordas. He has detected five more pairs than were previously known, and names the whole series as follows:—1, the thoracic salivary glands, which are larger than the others, and nine other pairs, which are all contained in the head as follows: 2, postcerebral; 3, supracerebral; 4, lateropharyngeal; 5, mandibular; 6, internomandibular, situated on the inner side of the base of mandible; 7, sublingual; 8, lingual (these and 1 to 7 common to all Hymenoptera); 9, paraglossal (in Vespidæ); 10, maxillary (very distinct in most wasps). These glands do not all occur in the same species, being more or less atrophied.

Bordas further shows the segmental arrangement of the cephalic glands by stating that the supracerebral glands correspond to the antennal segment, the sublingual glands to the labial, the mandibular glands (external and internal) to the mandibular segment, the maxillary glands to the 1st maxillary segment, the lingual glands to the 2d maxillary segment, while the thoracic and postcerebral salivary glands, he thinks, correspond to the ocular segment, a view with which we are indisposed to agree, although conceding that each of the six segments of the head has in it at least one pair of salivary glands.

Functions of the different salivary glands in Hymenoptera.—The secretion of the thoracic glands is feebly alkaline. The postcerebral salivary glands, considered by Ramdohr to be organs of smell, secrete, like the preceding, a distinctively alkaline fluid, which mingles with the products of the thoracic glands. The supracerebral glands, also equally well developed in all Hymenoptera, though much atrophied in the females and especially the males of Apis mellifica, also in the Vespinæ and Polistinæ, secrete an abundant, feebly acid liquid, which is actively concerned in digestion.

As to the mandibular glands, which Wolf supposed to be olfactory organs, their acid secretion, though smelling strongly, acts energetically on the food as soon as introduced into the mouth.