Fig. 353.—Nymph of Lachnus, showing position of wax-glands.—Gissler del.
The wax is secreted by minute unicellular dermal glands, which in the lower insects (Hemiptera) are distributed nearly all over the body, but in the bees are restricted either to the under (Apis, Fig. 352) or upper side (Trigona) of the end of the abdomen.
The wax-glands of Pemphigus, Chermes, etc., lie under the little warts, seen in Lachnus strobi, the white-pine aphis, to be distributed in transverse lines across the back and sides of the abdominal segments (Fig. 353). These warts are surrounded by a chitinous ring, and divided into delicately marked areas. Through the delicate numerous pits in the chitinous membrane of these areas the little waxen threads project, since under each area ends a duct leading from a large glandular cell, which is a specially modified hypodermis cell (Claus). The wax threads are hollow, and all those arising from a single glued cell form a bundle, whose threads separate from each other and form a white woolly down or bloom covering the body. Witlaczil also shows that gall-forming Aphids secrete a wax-like substance, which, during the movements of the insects in the gall, is rubbed off, becoming a watery layer mixed with the fluid excrement, which forms a spherical impervious layer lining the gall, and thus rendering possible the mode of life of the gall-lice.
In the Psyllidæ Witlaczil has discovered wax-glands which also secrete slender waxen threads. They are situated in groups of two or three at the end of the abdomen near the anus, and arise from hypodermis cells. The wax threads surround the liquid excrement as it passes out of the vent, covering it with a continuous layer of wax. The excrement accordingly is discharged very slowly and gradually, in sausage-shaped masses slightly strung together and rolled into close spirals. The body becomes unavoidably smeared with the sticky excrement, since it is not entirely covered by the waxy layer. Moreover, in the larvæ of many Psyllidæ waxen threads are formed on the upper side of the abdomen; they are for the most part tightly curled or frizzly, like wool, and form, though partly torn, a waxen coat, chiefly on the side and back of the thorax and abdomen. The insects appear therefore as if covered with dust. The mature animals of many species are also covered with a waxen down. The wax threads rapidly dissolve and disappear in alcohol. From a wax-like substance more or less easily dissolved in alcohol arise peculiar hair-like structures which, in the larvæ of Psyllidæ, are situated on the side and end of the body and also on the rudiments of the wings. They are readily distinguished from ordinary hairs, as they arise from glandular cells, and are of very different lengths, more or less like bristles, but hollow, and very brittle. They are leaf-like in the first nymphal stages of Trioza rhamni, but in following stages become narrow and form a row around the entire periphery of the body.
The waxen dorsal shield which protects the body of bark-lice (Coccidæ) is a similar product.
Fig. 354.—Young nymph and developing scale of Aspidiotus perniciosus: a, ventral view of nymph, showing sucking beak with setæ separated, with enlarged tarsal claw at right; b, dorsal view of same, somewhat contracted, with the first waxy filaments appearing; c, dorsal and lateral views of same, still more contracted, illustrating further development of wax secretion; d, later stage of same, dorsal and lateral views, showing matting of wax secretions and first form of young scale; all greatly enlarged.—After Howard and Marlatt, Bull. 3, N. S., Div. Ent., U. S. Dept. of Agr.
Witlaczil has described the way it is formed in Aspidiotus and Leucaspis. The freshly hatched nymph shows no signs of a waxy secretion. But eventually waxen threads arise first on the hinder and anterior end of the body, and then over the whole surface. These threads interlace into a sort of felting and thus form the shield, which is usually much larger than the body and lies closely upon it. The shield is formed after the first moult. It is noteworthy that these threads are matted together to form as thick a tissue as that of the shield itself. The shield is whitish or gray and rather thin. On the thinnest part of the edge the single threads may be drawn out. The growth of the shield advances with the increase in size of the nymph around the entire edge, but is greatest behind. The first two larval skins are retained on the back under the shield. Also a very thin waxen pellicle remains on the resting place of the insect when it is raised. The wax-glands open in the pitted fields, and appear as clear brownish cells which are distinguished from the ordinary hypodermis cells by their greater size. (Witlaczil. Compare also Fig. 354.)