Fig. 603.—Changes in the nervous system of Vanessa urticæ, during and after pupation.—After Newport.

Fig. 604.—Changes in the nervous system of Vanessa urticæ, from 24 to 58 hours after pupation.—After Newport.

The initial steps and many of the subsequent internal changes escaped the notice of Newport and others of his time, and it was not until the epoch-making work of Weismann on the ultimate processes of transformation of Corethra and of Musca, that we had an adequate knowledge of the subject.

Weismann (1864) was the first to show for the Muscidæ and Corethra that the appendages, wings, and other parts of the imago originate in separate, minute, cellular masses called imaginal disks, buds, or folds (histoblasts of Künckel). These imaginal buds, which arise from the hypodermis, being masses of indifferent cells, are usually present in the very young larva, and even in the later embryonic stages. It has been shown that such imaginal buds exist for each part of the body, not only for the appendages and wings (p. 126), but for the different sections of the digestive canal. During the semipupal stage these buds enlarge, grow, and at the same time there is a corresponding destruction of the larval organs. The process of destruction is due to the activity of the blood corpuscles or leucocytes (phagocytes), the larval organs thus broken up forming a creamy mass, the buds from which the new organs are to arise resisting the attacks of the virulent leucocytes, which attach themselves to the weakened tissue and engulf the pigments (see p. 422). The two processes of destruction of the larval organs (histolysis) and the building up of the imaginal organs (histogenesis) go hand in hand, so that the connection of the organs in question in most cases remains entirely continuous; while the last steps in the destruction of the larval organs only take place after the organs of the imago have assumed their definite shape and size. Other observers have corroborated and confirmed his statements and observations, Gonin extending them to the Lepidoptera and Bugnion to the Hymenoptera.

It is a pity that the observations, such as were set on foot by Weismann, were not first made on the Trichoptera and Lepidoptera, which are much more primitive and unmodified forms than the Diptera, but mistakes of this nature have frequently happened in the history of science.

Fig. 605.—Full grown larva of Pieris brassicæ opened along the dorsal line: d, digestive canal; s, silk-gland; g, brain; st I, prothoracic stigma; st IV, 1st abdominal stigma; a, a′, germs (buds) of fore and hind wings; p, bud of thoracic segment;—those of the 3d pair are concealed under the silk-glands; I-III, thoracic rings.—After Gonin.

The latest and most detailed researches are those of J. Gonin on the metamorphoses of Pieris brassicæ, made under the direction of Professor E. Bugnion. They fill an important gap in our knowledge, and show that the Lepidoptera transform in nearly the same manner as described by Weismann in Corethra. We give the following condensed account of Gonin’s observations.