The locomotion of insects is an extremely complicated subject.

Let us consider, Graber says, first, a running or carabid beetle, when walking merely with the fore and hind legs. The former will be bent forward and the latter backward.

“Let us begin with the left fore leg (Fig. 118, L1). Let the same be extended and fixed on the ground by means of its sharp claws and its pointed heel. Now what happens when the tibial flexors draw together? As the foot, and therefore the tibia also, have a firm position, then the contraction of the muscles named must cause the femur to approach the tibia, whereby the whole body is drawn along with it. This individual act of motion may be well studied in grasshoppers when they are climbing on a twig by stretching out their long fore leg directly forward, and then drawing up the body through the shortening of the tibial flexors until the middle leg also reaches the branch.

“But while the fore legs advance the body by drawing the free lever to the fixed leg-segment, the hind legs do this in exactly the opposite way. The hind leg, namely, seeks to stretch out the tibia, and thus to increase the angle of the knee (R3), thereby giving a push on the ground, by means of which the body is shoved forward a bit.

“Though it might be supposed that the feet would remain stationary during the extension or retraction of the limbs, this never occurs in actual walking. Not merely the upper, but also the lower, thigh is either drawn in or stretched out, as the case may be. The latter then describes a straight line with its point during this scraping or scratching motion (Fig. 115, no), which is obviously the chord to that quadrant which would be drawn by the tibia or foot in a yielding medium, as water, for instance. But even this motion results extremely rarely, and never in actual walking. If we fix our eye anew upon the fore leg at the very moment when it is again retracted, after the resultant ‘fixing,’ we shall then observe that the hip also is simultaneously turned backward in a definite angle. The tibia would describe the arc nq (Fig. 115) by means of the latter alone.

“This plane, in conjunction with the rectilinear ‘movement’ (no) obtained by the retraction of the tibia, produces a path (nr), and this is what is actually described by a painted foot upon a properly prepared surface, as a sheet of paper;[[22]] supposing, however, that the body in the meantime is not moved forward by other forces. In the last case, and this indeed always takes place in running, the trunk is moved a bit forward, together with the leg which is just describing its curve with a rapidity corresponding to the momentum obtained; the result of this is that the curve of the foot from its beginning (n) to its end (a) bends round close to itself, just as a man who, when on board a ship in motion, walks across it diagonally, and yet on the whole moves forward, because his line of march, uniting with that of the ship, results in a change of position in space.

“The case is the same in the middle and hind legs, which must make a double course also, yet in such a way that the straight line is drawn, not during the retraction, but during the extension; during which, however, quite as in the fore leg, the members mentioned (R3) gradually approach the body.

“When the legs have reached the maximum of their retraction, or of their extension, as the case may be, and therefore the end of their active course for that time, then begins the opposite or backward movement; that is, the fore legs are again extended, while their levers draw the remaining legs together again.

Fig. 118.—A Carabus beetle in the act of walking or running: three legs (L1, R2, L3) are directed forward, while the others (R1, L2, R3), which are directed backward toward the tail, have ended their activity; ab, cd, and ef are curves described by the end of the tibiæ, and passing back to the end of the body; bh, di, and fg are curves described by the same legs during their passive change of position.—After Graber.