Our claim that Lamarck should share with Cuvier the honor of being a founder of palæontology[105] is substantiated by the philosophic Lyell, who as early as 1836, in his Principles of Geology, expresses the same view in the following words: “The labors of Cuvier in comparative osteology, and of Lamarck in recent and fossil shells, had raised these departments of study to a rank of which they had never previously been deemed susceptible.”

Our distinguished American palæontologist, the late O. C. Marsh, takes the same view, and draws the following parallel between the two great French naturalists:

“In looking back from this point of view, the philosophical breadth of Lamarck’s conclusions, in comparison with those of Cuvier, is clearly evident. The invertebrates on which Lamarck worked offered less striking evidence of change than the various animals investigated by Cuvier; yet they led Lamarck directly to evolution, while Cuvier ignored what was before him on this point, and rejected the proof offered by others. Both pursued the same methods, and had an abundance of material on which to work, yet the facts observed induced Cuvier to believe in catastrophes, and Lamarck in the uniform course of nature. Cuvier declared species to be permanent; Lamarck, that they were descended from others. Both men stand in the first rank in science; but Lamarck was the prophetic genius, half a century in advance of his time.”[106]

FOOTNOTES:

[81] Although Defrance (born 1759, died in 1850) aided Lamarck in collecting tertiary shells, his earliest palæontological paper (on Hipponyx) did not appear until the year 1819.

[82] In a footnote Lamarck refers to an unpublished work, which probably formed a part of the Hydrogéologie, published in the following year. “Voyez à ce sujet mon ouvrage intitulé: De l’influence du mouvement des eaus sur la surface du globe terrestre, et des indices du déplacement continuel du bassin des mers, ainsi que de son transport successif sur les différens points de la surface du globe” (no date).

[83] It should be stated that the first observer to inaugurate the comparative method was that remarkable forerunner of modern palæontologists, Steno the Dane, who was for a while a professor at Padua. In 1669, in his treatise entitled De Solido intra Solidum naturaliter contento, which Lyell translates “On gems, crystals, and organic petrefactions inclosed within solid rocks,” he showed, by dissecting a shark from the Mediterranean, that certain fossil teeth found in Tuscany were also those of some shark. “He had also compared the shells discovered in the Italian strata with living species, pointed out their resemblance, and traced the various gradations from shells merely calcined, or which had only lost their animal gluten, to those petrefactions in which there was a perfect substitution of stony matter” (Lyell’s Principles, p. 25). About twenty years afterwards, the English philosopher Robert Hooke, in a discourse on earthquakes, written in 1688, but published posthumously in 1705, was aware that the fossil ammonites, nautili, and many other shells and fossil skeletons found in England, were of different species from any then known; but he doubted whether the species had become extinct, observing that the knowledge of naturalists of all the marine species, especially those inhabiting the deep sea, was very deficient. In some parts of his writings, however, he leans to the opinion that species had been lost. Some species, he observes with great sagacity, “are peculiar to certain places, and not to be found elsewhere.” Turtles and such large ammonites as are found in Portland seem to have been the productions of hotter countries, and he thought that England once lay under the sea within the torrid zone (Lyell’s Principles).

Gesner the botanist, of Zurich, also published in 1758 an excellent treatise on petrefactions and the changes of the earth which they testify. He observed that some fossils, “such as ammonites, gryphites, belemnites, and other shells, are either of unknown species or found only in the Indian and other distant seas” (Lyell’s Principles).

Geikie estimates very highly Guettard’s labors in palæontology, saying that “his descriptions and excellent drawings entitle him to rank as the first great leader of the palæontological school of France.” He published many long and elaborate memoirs containing brief descriptions, but without specific names, and figured some hundreds of fossil shells. He was the first to recognize trilobites (Illænus) in the Silurian slates of Angers, in a memoir published in 1762. Some of his generic names, says Geikie, “have passed into the languages of modern palæontology,” and one of the genera of chalk sponges which he described has been named after him, Guettardia. In his memoir “On the accidents that have befallen fossil shells compared with those which are found to happen to shells now living in the sea” (Trans. Acad. Roy. Sciences, 1765, pp. 189, 329, 399) he shows that the beds of fossil shells on the land present the closest possible analogy to the flow of the present sea, so that it becomes impossible to doubt that the accidents, such as broken and worn shells, which have affected the fossil organisms, arose from precisely the same causes as those of exactly the same nature that still befall their successors on the existing ocean bottom. On the other hand, Geikie observes that it must be acknowledged “that Guettard does not seem to have had any clear ideas of the sequence of formations and of geological structures.”

[84] Scheuchzer’s “Complaint and Vindication of the Fishes” (Piscium Querelae et Vindiciae, Germany, 1708), “a work of zoölogical merit, in which he gave some good plates and descriptions of fossil fish” (Lyell). Gesner’s treatise on petrefactions preceded Lamarck’s work in this direction, as did Brander’s Fossillia Hantoniensia, published in 1766, which contained “excellent figures of fossil shells from the more modern (or Eocene) marine strata of Hampshire. In his opinion fossil animals and testacea were, for the most part, of unknown species, and of such as were known the living analogues now belonged to southern latitudes” (Lyell’s Principles, eighth edition, p. 46).