210. Mouth-parts of the House fly.

211. Mouth-parts of Horse fly.

Another puzzle for the evolutionist to solve is how to account for the change from the caterpillar with its powerful jaws, to the butterfly with its sucking or haustellate mouth-parts. We shall best approach the solution of this difficult problem by a study of a wide range of facts, but a few of which can be here noticed. The older entomologists divided insects into haustellate or suctorial, and mandibulate or biting insects, the butterfly being an example of one, and the beetle serving to illustrate the other category. But we shall find in studying the different groups that these are relative and not absolute terms. We find mandibulate insects with enormous jaws, like the Dytiscus, or Chrysopa larva or ant lion, perforated, as in the former, or enclosing, as in the latter two insects, the maxillæ (b), which slide backward and forward within the hollowed mandibles (a, Fig. 209, jaws of the ant lion), along which the blood of their victims flows. They suck the blood, and do not tear the flesh of their prey. The enormous mandibles of the adult Corydalus are too large for use and, as Walsh observed, are converted in the male into simple clasping organs. And to omit a number of instances, in the suctorial Hemiptera or bugs we have different grades of structure in the mouth-parts. In the biting lice (Mallophaga) the mouth is mandibulate; in the Thrips it is mandibulate, the jaws being free, and the maxillæ bearing palpi, while the Pediculi are suctorial, and the true bugs are eminently so. But in the bed bug it is easy to see that the beak is made up of the two pairs of jaws, which are simply elongated and adapted for piercing and sucking. Among the so-called haustellate insects the mouth-parts vary so much in different groups, and such different organs separately or combined perform the function of sucking, that the term haustellate loses its significance and even misleads the student. For example, in the house fly the tongue (Fig. 210 l, the mandibles, m, and maxillæ, mp, are useless), a fleshy prolongation of the labium or second maxillæ, is the sucker, while the mandibles and maxillæ are used as lancets by the horse fly (Fig. 211, m, mandibles, mx, maxillæ). The maxillæ in the butterfly are united to form the sucking tube, while in the bee the end of the labium (Fig. 212) is specially adapted for lapping, not sucking, the nectar of flowers. But even in the butterfly, or more especially the moth, there is a good deal of misapprehension about the structure of the so-called "tongue." The mouth-parts of the caterpillar exist in the moth. The mandibles of the caterpillar occur in the head of the moth as two small tubercles (Fig. 213, m). They are aborted in the adult. While the maxillæ are as a rule greatly developed in the moth, in the caterpillar they are minute and almost useless. The labium or second maxillæ, so large in the moth, serves simply as a spinneret in the caterpillar. But we find a great amount of variation in the tongue or sucker of moths, and in the silk moths the maxillæ are rudimentary, and there is no tongue, these organs being but little more developed than in the caterpillar. Figure 213, B, shows the minute blade-like maxilla of the magnificent Luna moth, an approximation to the originally blade-like form in beetles and Neuroptera. The maxillæ in this insect are minute, rudimentary, and of no service to the creature, which does not take food. In other moths of the same family we have found the maxillæ longer, and touching at their tips, though too widely separate at base to form a sucking tube, while in others the maxillæ are curved, and meet to form a true tube.

212. Head of Humble bee.

In the Cecropia moth it is difficult to trace the rudiments of the maxillæ at all, and thus we have in the whole range of the moths, every gradation from the wholly aborted maxillæ of the Platysamia Cecropia, to those of Macrosila cluentius of Madagascar, which form a tongue, according to Mr. Wallace, nine and a quarter inches in length, probably to enable their owner to probe the deep nectaries of certain orchids. These changes in form and size are certainly correlated with important differences in habits, and the evolutionist can as rightly say that the structural changes were induced by use and disuse and change of habits and the environment of the animal, as on the other hand the advocate of special creation claims that the two are simply correlated, and that is all we know about it.

213. Mouth-parts of Moths.