For the changeableness of the weather depends on the nature and motion of the air, and on the amount of moisture, and the direction of the winds. It is mostly occasioned by currents of air which pass over the earth, producing, wherever they meet, here cold, there heat—here rain, there hail or snow.
Along a part of the coast of the United States electric telegraphs have been established. Vessels receive, at a considerable distance, the news of a storm approaching, together with its velocity and direction. The electric telegraph being quicker than the wind, the vessels receive the news in time to take their directions. Before the storm reaches them, they have been enabled to take precautionary measures for its reception.
This is a great step forward in our new science. But not before the time when such stations shall be established everywhere throughout the land, will meteorology manifest its real importance. For it has, like every other science, firmly established rules, which can easily be calculated and verified; while, on the other hand, allowances must be made for changeable conditions which tend to disturb the rules.
We will now endeavor to introduce to our readers these established rules, and explain the changeable conditions to which we refer.
CHAPTER II.
OF THE WEATHER IN SUMMER AND WINTER.
As we have stated above, there exist fixed rules about the weather; these rules are simple and easy to compute. But our computations are often disturbed by a great many circumstances beyond our reach, so much that we are governed more by exceptions than rules.
These latter are based on the position of our earth with regard to the sun. They are, therefore, easy to determine, for astronomy is a science resting on firm pillars; and although nothing in the universe is so far from us as the stars, yet there is nothing in the world so certain as our knowledge of the courses of the constellations and their distances. Many of our readers may be surprised, perhaps, to hear that we know more accurately the distance from the earth to the sun than the distance from New York to Cincinnati. Indeed, astronomical knowledge is the most reliable in the world. No merchant is able to measure a piece of cloth without being mistaken, to say the least, as much as 1/300 part; while the uncertainty with respect to distances of bodies in the solar system amounts to a great deal less than 1/300 part.
Our earth turns on its axis once in every twenty-four hours, and goes also round the sun once a year. But the earth's axis is inclined towards the earth's orbit—orbit is the circle which a celestial body describes in its revolution around another—in such a manner as to cause the earth, in its orbit round the sun, to be illuminated for six months on one side, and for six months on the other side of the earth. Hence it happens, that at the north pole there is continual day during six months in the year, after which follows uninterrupted winter for the next six months; in the same way the day on the south pole lasts six months, and the night following the same length of time. In the middle between both poles, however, in the regions around the equator, the day has throughout the year twelve hours; the night, of course, the same; while in the countries between the equator and the poles, the length of day and night is, through the whole year, constantly varying.