Fig. 5. The upper portion of the illustration shows a section of a typical conduit system of electric tramway traction. This section is taken at one of the cast-iron 'yokes' which support the rails forming the slot through which the 'plough' passes from the car to make contact with the conductor rails.

The lower illustration gives a longitudinal and transverse section of the 'G-B.' system of surface-contact tramway traction. The rope-like cable carries the current and is supported on insulators. When the collector on the car covers the stud, the action of the magnet draws the lower part of the stud into contact with the cable, thus supplying current to the car. After the car has passed, the lower part of the stud rises by the action of a spring and, breaking contact with the 'live' cable, becomes dead. (In actual practice contact would be made under the conditions shown in the left-hand diagram.)

Experience of these drawbacks led the London County Council to seek an alternative to the conduit when constructing electric lines in the north of London. Many of the borough councils, following the County Council's own previous arguments, would not listen to the suggestion of the overhead system; and a freshly-elected Council, pledged to a policy of economy, determined to try the surface-contact system. How this trial gave rise to a violent political controversy, leading to the abandonment of the project and culminating in important libel actions, forms a picturesque story which need not be told in detail here. Its main interest lies, for the moment, in the emphasis which the incidents give to a characteristic of the surface-contact system—its sensitiveness to minute alterations in detail.

The surface-contact or 'stud' system is really a modification of the conduit system. It has, in fact, been called the 'closed conduit.' The electric wires are again placed in a channel or pipe underground, but instead of being accessible through a slot, contact can be made with them only through metal studs placed at intervals flush with the roadway. By special electro-mechanical devices in the stud and on the car, the stud is brought into contact with the 'live' underground wire only when the car is over it. That is to say, the studs covered and protected by the car will be 'live' and supplying power to the car through a sliding brush or 'skate,' while those not so protected will be 'dead' and therefore of no danger to the public.

An immense amount of ingenuity has been expended by many engineers in devising studs to act with absolute certainty under all conditions. In the laboratory or the workshop, and even on an experimental track, it was simple enough to arrange a mechanism which would 'make' and 'break' contact with admirable regularity. But when it came to putting the mechanism down on an ordinary roadway, to be covered with mud, pounded by heavy traffic, and subjected to the action of damp, frost, heat, and all sorts of unexpected influences, much less satisfactory results were obtained. Time and again the hopes of engineers were dashed by a succession of petty troubles—some of them obscure, most of them unforeseen. The weak points in nearly all the systems were the insulation of electrical parts and the road construction work. Lack of simplicity and rigidity led to the introduction of moisture and to the shifting of parts so that studs jammed and remained 'alive' after the car had passed over them. But even after the practical elimination of these troubles the success of the surface-contact system seemed as sensitive as the system itself.

One system was tried at Torquay, and discontinued after a protracted trial on a large scale. Another system—the Lorain system—was installed at Wolverhampton and is still in operation, but without imitators. A third system—the Griffiths-Bedell or G-B. system—was installed in 1905 at Lincoln, with satisfactory results. It was the G-B. system which was offered to the metropolitan borough councils as an alternative to the conduit and the trolley. A trial section was laid down in 1898 in the Bow Road, and a certain amount of trouble was experienced with live studs and with various parts of the equipment. Owing to the stud system having been suggested by the Moderate Party, the experimental difficulties were extensively advertised by members of the Progressive Party, who condemned the system as dangerous and unworkable. Public feeling was worked up to such a pitch that, in the face of expert advice in favour of the system in a somewhat modified form, the Council decided to abandon the experiment. Libel actions by the owners of the 'G-B.' patents followed, part of the plaintiffs' case being that the system as laid down was altered in a number of small but vitally important details by the Council's officers and was therefore not the 'G-B.' system proper.

The results with the 'G-B.' system at Lincoln prove that it is possible to construct surface-contact tramways at a cost about 10 per cent. more than that of trolley tramways, and to operate them, safely and with reliability, at a cost not appreciably more than the general working expenses of an overhead line. But this proof has not only been enfeebled for the special reasons just described, but it came at a time when the public had got quite accustomed to the trolley and also when most towns had already been equipped with electric traction. Ten or fifteen years earlier, such a proof might have changed the course of tramway development; now it can have no great material effect.

The upshot of the contest between the three systems has, therefore, been the survival of the one which was most despised at the outset.