The first photograph of a prominence, as shown by the spectroscope in daylight, was taken by Professor Young in 1870.[604] But neither his method, nor that described by Dr. Braun in 1872,[605] had any practical success. This was reserved to reward the efforts towards the same end of Professor Hale. Begun at Harvard College in 1889,[606] they were prosecuted soon afterwards at the Kenwood Observatory, Chicago. The great difficulty was to extricate the coloured image of the gaseous structure, spectroscopically visible at the sun's limb, from the encompassing glare, a very little of which goes a long way in fogging sensitive plates. To counteract its mischievous effects, a second slit,[607] besides the usual narrow one in front of the collimator, was placed on guard, as it were, behind the dispersing apparatus, so as to shut out from the sensitised surface all light save that of the required quality. The sun's image being then allowed to drift across the outer slit, while the plate holder was kept moving at the same rate, the successive sectional impressions thus rapidly obtained finally "built up" a complete picture of the prominence. Another expedient was soon afterwards contrived.[608] The H and K rays of calcium are always, as we have seen, bright in the spectrum of prominences. They are besides fine and sharp, while the corresponding absorption-lines in the ordinary solar spectrum are wide and diffuse. Hence, prominences formed by the spectroscope out of these particular qualities of violet light, can be photographed entire and at once, for the simple reason that they are projected upon a naturally darkened background. Atmospheric glare is abolished by local absorption. This beautiful method was first realised by Professor Hale in June, 1891.

A "spectroheliograph," consisting of a spectroscopic and a photographic apparatus of special type, attached to the eye-end of an equatoreal twelve inches in aperture, was erected at Kenwood in March, 1891; and with its aid, Professor Hale entered upon original researches of high promise for the advancement of solar physics. Noteworthy above all is his achievement of photographing both prominences and faculæ on the very face of the sun. The latter had, until then, been very imperfectly observed. They were only visible, in fact, when relieved by their brilliancy against the dusky edge of the solar disc. Their convenient emission of calcium light, however, makes it possible to photograph them in all positions, and emphasises their close relationship to prominences. The simultaneous picturing, moreover, of the entire chromospheric ring, with whatever trees or fountains of fire chance to be at the moment issuing from it, has been accomplished by a very simple device. The disc of the sun itself having been screened with a circular metallic diaphragm, it is only necessary to cause the slit to traverse the virtually eclipsed luminary, in order to get an impression of the whole round of its fringing appendages. And the record can be extended to the disc by removing the screen, and carrying the slit back at a quicker rate, when an "image of the sun's surface, with the faculæ and spots, is formed on the plate exactly within the image of the chromosphere formed during the first exposure. The whole operation," Professor Hale continues, "is completed in less than a minute, and the resulting photographs give the first true pictures of the sun, showing all of the various phenomena at its surface."[609] Most of these novel researches were, by a remarkable coincidence, pursued independently and contemporaneously by M. Deslandres, of the Paris Observatory.[610]

The ultra-violet prominence spectrum was photographed for the first time from an uneclipsed sun, in June, 1891, at Chicago. Besides H and K, four members of the Huggins-series of hydrogen-lines imprinted themselves on the plate.[611] Meanwhile M. Deslandres was enabled, by fitting quartz lenses to his spectroscope, and substituting a reflecting for a refracting telescope, to get rid of the obstructive action of glass upon the shorter light-waves, and thus to widen the scope of his inquiry into the peculiarities of those derived from prominences.[612] As the result, not only all the nine white-star lines were photographed from a brilliant sun-flame, but five additional ones were found to continue the series upward. The wave-lengths of these last had, moreover, been calculated beforehand with singular exactness, from a simple formula known as "Balmer's Law."[613] The new lines, accordingly, filled places in a manner already prepared for them, and were thus unmistakably associated with the hydrogen-spectrum. This is now known to be represented in prominences by twenty-seven lines,[614] forming a kind of harmonic progression, only

[PLATE I.]

Photographs of the Solar Chromosphere and Prominences.
Taken with the Spectroheliograph of the Kenwood Observatory, Chicago, by Professor George E. Hale.

four of which are visibly darkened in the Fraunhofer spectrum of the sun.

The chemistry of "cloud-prominences" is simple. Hydrogen, helium, and calcium are their chief constituents. "Flame-prominences," on the other hand, show, in addition, the characteristic rays of a number of metals, among which iron, titanium, barium, strontium, sodium, and magnesium are conspicuous. They are intensely brilliant; sharply defined in their varying forms of jets, spikes, fountains, waterspouts; of rapid formation and speedy dissolution, seldom attaining to the vast dimensions of the more tranquil kind. Eruptive or explosive by origin, they occur in close connection with spots; whether causally, the materials ejected as "flames" cooling and settling down as dark, depressed patches of increased absorption;[615] or consequentially, as a reactive effect of falls of solidified substances from great heights in the solar atmosphere.[616] The two classes of phenomena, at any rate, stand in a most intimate relation; they obey the same law of periodicity, and are confined to the same portions of the sun's surface, while quiescent prominences may be found right up to the poles and close to the equator.

The general distribution of prominences, including both genera, follows that of faculæ much more closely than that of spots. From Father Secchi's and Professor Respighi's observations, 1869-71, were derived the first clear ideas on the subject, which have been supplemented and modified by the later researches of Professors Tacchini and Riccò at Rome and Palermo. The results are somewhat complicated, but may be stated broadly as follows. The district of greatest prominence-frequency covers and overlaps by several degrees that of the greatest spot-frequency. That is to say, it extends to about 40° north and south of the equator.[617] There is a visible tendency to a second pair of maxima nearer the poles. The poles themselves, as well as the equator, are regions of minimum occurrence. Distribution in time is governed by the spot-cycle, but the maximum lasts longer for prominences than for spots.

The structure of the chromosphere was investigated in 1869 and subsequent years by Professor Respighi, director of the Capitoline Observatory, as well as by Spörer, and Brédikhine of the Moscow Observatory. They found this supposed solar envelope to be of the same eruptive nature as the vast protrusions from it, and to be made up of a congeries of minute flames[618] set close together like blades of grass. "The appearance," Professor Young writes,[619] "which probably indicates a fact, is as if countless jets of heated gas were issuing through vents and spiracles over the whole surface, thus clothing it with flame which heaves and tosses like the blaze of a conflagration."