The object is now always inconspicuous, and often practically invisible, and may be said to float passively in the environing medium.[1085] Yet there are sparks beneath the ashes. A rosy tinge faintly suffused it in April, 1900,[1086] and its absolute end may still be remote.

The extreme complexity of the planet's surface-movements has been strikingly evinced by Mr. Stanley Williams's detailed investigations. He enumerated in 1896[1087] nine principal currents, all flowing parallel to the equator, but unsymmetrically placed north and south of it, and showing scant signs of conformity to the solar rule of retardation with increase of latitude. The linear rate of the planet's equatorial rotation was spectroscopically determined by Bélopolsky and Deslandres in 1895. Both found it to fall short of the calculated speed, whence an enlargement, by self-refraction, of the apparent disc was inferred.[1088]

Jupiter was systematically photographed with the Lick 36-inch telescope during the oppositions of 1890, 1891, and 1892, the image thrown on the plates (after eightfold direct enlargement) being one inch in diameter. Mr. Stanley Williams's measurements and discussion of the set for 1891 showed the high value of the materials thus collected, although much more minute details can be seen than can at present be photographed. The red spot shows as "very distinctly annular" in several of these pictures.[1089] Recently, the planet has been portrayed by Deslandres with the 62-foot Meudon refractor.[1090] The extreme actinic feebleness of the equatorial bands was strikingly apparent on his plates.

In 1870, Mr. Ranyard[1091]—whose death, December 14, 1894, was a serious loss to astronomy—acting upon an earlier suggestion of Sir William Huggins, collected records of unusual appearances on the disc of Jupiter, with a view to investigate the question of their recurrence at regular intervals. He concluded that the development of the deeper tinges of colour, and of the equatorial "port-hole" markings girdling the globe in regular alternations of bright and dusky, agreed, so far as could be ascertained, with epochs of sun-spot maximum. The further inquiries of Dr. Lohse at Bothkamp in 1873[1092] went to strengthen the coincidence, which had been anticipated à priori by Zöllner in 1871.[1093] Moreover, separate and distinct evidence was alleged by Mr. Denning in 1899 of decennial outbreaks of disturbance in north temperate regions.[1094] It may, indeed, be taken for granted that what Hahn terms the universal pulse of the solar system[1095] affects the vicissitudes of Jupiter; but the law of those vicissitudes is far from being so obviously subordinate to the rhythmical flow of central disturbance as are certain terrestrial phenomena. The great planet, being in fact himself a "semi-sun," may be regarded as an originator, no less than a recipient, of agitating influences, the combined effects of which may well appear insubordinate to any obvious law.

It is likely that Saturn is in a still earlier stage of planetary development than Jupiter. He is the lightest for his size of all the planets. In fact, he would float in water. And since his density is shown, by the amount of his equatorial bulging, to increase centrally,[1096] it follows that his superficial materials must be of a specific gravity so low as to be inconsistent, on any probable supposition, with the solid or liquid states. Moreover, the chief arguments in favour of the high temperature of Jupiter, apply, with increased force, to Saturn; so that it may be concluded, without much risk of error, that a large proportion of his bulky globe, 73,000 miles in diameter, is composed of heated vapours, kept in active and agitated circulation by the process of cooling.

His unique set of appendages has, since the middle of the last century, formed the subject of searching and fruitful inquiries, both theoretical and telescopic. The mechanical problem of the stability of Saturn's rings was left by Laplace in a very unsatisfactory condition. Considering them as rotating solid bodies, he pointed out that they could not maintain their position unless their weight were in some way unsymmetrically distributed; but made no attempt to determine the kind or amount of irregularity needed to secure this end. Some observations by Herschel gave astronomers an excuse for taking for granted the fulfilment of the condition thus vaguely postulated; and the question remained in abeyance until once more brought prominently forward by the discovery of the dusky ring in 1850.

The younger Bond led the way, among modern observers, in denying the solidity of the structure. The fluctuations in its aspect were, he asserted in 1851,[1097] inconsistent with such a hypothesis. The fine dark lines of division, frequently detected in both bright rings, and as frequently relapsing into imperceptibility, were due, in his opinion, to the real nobility of their particles, and indicated a fluid formation. Professor Benjamin Peirce of Harvard University immediately followed with a demonstration, on abstract grounds, of their non-solidity.[1098] Streams of some fluid denser than water were, he maintained, the physical reality giving rise to the anomalous appearance first disclosed by Galileo's telescope.

The mechanism of Saturn's rings, proposed as the subject of the Adams Prize, was dealt with by James Clerk Maxwell in 1857. His investigation forms the groundwork of all that is at present known in the matter. Its upshot was to show that neither solid nor fluid rings could continue to exist, and that the only possible composition of the system was by an aggregated multitude of unconnected particles, each revolving independently in a period corresponding to its distance from the planet.[1099] This idea of a satellite-formation had been, remarkably enough, several times entertained and lost sight of. It was first put forward by Roberval in the seventeenth century, again by Jacques Cassini in 1715, and with perfect definiteness by Wright of Durham in 1750.[1100] Little heed, however, was taken of these casual anticipations of a truth which reappeared, a virtual novelty, as the legitimate outcome of the most refined modern methods.

The details of telescopic observation accord, on the whole, admirably with this hypothesis. The displacements or disappearance of secondary dividing-lines—the singular striated appearance, first remarked by Short in the eighteenth century, last by Perrotin and Lockyer at Nice, March 18, 1884[1101]—show the effects of waves of disturbance traversing a moving mass of gravitating particles;[1102] the broken and changing line of the planet's shadow on the ring gives evidence of variety in the planes of the orbits described by those particles. The whole ring-system, too, appears to be somewhat elliptical.[1103]