The protrusion towards the sun, on September 25, of a brilliant luminous fan-shaped sector completed the resemblance to Halley's comet. The appearance of the head was now somewhat that of a "bat's-wing" gaslight. There were, however, no oscillations to and fro, such as Bessel had seen and speculated upon in 1835. As the size of the nucleus contracted with approach to perihelion, its intensity augmented. On October 2, it outshone Arcturus, and for a week or ten days was a conspicuous object half an hour after sunset. Its lustre—setting aside the light derived from the tail—was, at that date, 6,300 times what it had been on June 15, though theoretically—taking into account, that is, only the differences of distance from sun and earth—it should have been only 1/33 of that amount. Here, it might be thought, was convincing evidence of the comet itself becoming ignited under the growing intensity of the solar radiations. Yet experiments with the polariscope were interpreted in an adverse sense, and Bond's conclusion that the comet sent us virtually unmixed reflected sunshine was generally acquiesced in. It was, nevertheless, negatived by the first application of the spectroscope to these bodies.

Very few comets have been so well or so long observed as Donati's. It was visible to the naked eye during 112 days; it was telescopically discernible for 275, the last observation having been made by Mr. William Mann at the Cape of Good Hope, March 4, 1859. Its course through the heavens combined singularly with the orbital place of the earth to favour curious inspection. The tail, when near its greatest development, lost next to nothing by the effects of perspective, and at the same time lay in a plane sufficiently inclined to the line of sight to enable it to display its exquisite curves to the greatest advantage. Even the weather was, on both sides of the Atlantic, propitious during the period of greatest interest, and the moon as little troublesome as possible. The volume compiled by the younger Bond is a monument to the care and skill with which these advantages were turned to account. Yet this stately apparition marked no turning-point in the history of cometary science. By its study knowledge was indeed materially advanced, but along the old lines. No quick and vivid illumination broke upon its path. Quite insignificant objects—as we have already partly seen—have often proved more vitally instructive.

Donati's comet has been identified with no other. Its path is an immensely elongated ellipse, lying in a plane far apart from that of the planetary movements, carrying it at perihelion considerably within the orbit of Venus, and at aphelion out into space to 5-1/2 times the distance from the sun of Neptune. The entire circuit occupies over 2,000 years, and is performed in a retrograde direction, or against the order of the Signs. Before its next return, about the year 4000 A.D., the enigma of its presence and its purpose may have been to some extent—though we may be sure not completely—penetrated.

On June 30, 1861, the earth passed, for the second time in the century, through the tail of a great comet. Some of our readers may remember the unexpected disclosure, on the withdrawal of the sun below the horizon on that evening, of an object so remarkable as to challenge universal attention. A golden-yellow planetary disc, wrapt in dense nebulosity, shone out while the June twilight of these latitudes was still in its first strength. The number and complexity of the envelopes surrounding the head produced, according to the late Mr. Webb,[1192] a magnificent effect. Portions of six distinct emanations were traceable. "It was as though a number of light, hazy clouds were floating round a miniature full moon." As the sky darkened the tail emerged to view.[1193] Although in brightness and sharpness of definition it could not compete with the display of 1858, its dimensions proved to be extraordinary. It reached upwards beyond the zenith when the head had already set. By some authorities its extreme length was stated at 118°, and it showed no trace of curvature. Most remarkable, however, was the appearance of two widely divergent rays, each pointing towards the head, though cut off from it by sky-illumination, of which one was seen by Mr. Webb, and both by Mr. Williams at Liverpool, a quarter of an hour before midnight. There seems no doubt that Webb's interpretation was the true one, and that these beams were, in fact, "the perspective representation of a conical or cylindrical tail, hanging closely above our heads, and probably just being lifted up out of our atmosphere."[1194] The cometary train was then rapidly receding from the earth, so that the sides of the "outspread fan" of light shown by it when we were right in the line of its axis must have appeared (as they did) to close up in departure. The swiftness with which the visually opened fan shut proved its vicinity; and, indeed, Mr. Hind's calculations showed that we were not so much near as actually within its folds at that very time.

Already M. Liais, from his observations at Rio de Janeiro, June 11 to 14, and Mr. Tebbutt, by whom the comet was discovered in New South Wales on May 13, had anticipated such an encounter, while the former subsequently proved that it must have occurred in such a way as to cause an immersion of the earth in cometary matter to a depth of 300,000 miles.[1195] The comet then lay between the earth and the sun at a distance of about fourteen million miles from the former; its tail stretched outward just along the line of intersection of its own with the terrestrial orbit to an extent of fifteen million miles; so that our globe, happening to pass at the time, found itself during some hours involved in the flimsy appendage.

No perceptible effects were produced by the meeting; it was known to have occurred by theory alone. A peculiar glare in the sky, thought by some to have distinguished the evening of June 30, was, at best, inconspicuous. Nor were there any symptoms of unusual electric excitement. The Greenwich instruments were, indeed, disturbed on the following night, but it would be rash to infer that the comet had art or part in their agitation.

The perihelion-passage of this body occurred June 11, 1861; and its orbit has been shown by M. Kreutz of Bonn, from a very complete investigation founded on observations extending over nearly a year, to be an ellipse traversed in a period of 409 years.[1196]

Towards the end of August, 1862, a comet became visible to the naked eye high up in the northern hemisphere, with a nucleus equalling in brightness the lesser stars of the Plough and a feeble tail 20° in length. It thus occupied quite a secondary position among the members of its class. It was, nevertheless, a splendid object in comparison with a telescopic nebulosity discovered by Tempel at Marseilles, December 19, 1865. This, the sole comet of 1866, slipped past perihelion, January 11, without pomp of train or other appendages, and might have seemed hardly worth the trouble of pursuing. Fortunately, this was not the view entertained by observers and computers; since upon the knowledge acquired of the movements of these two bodies has been founded one of the most significant discoveries of modern times. The first of them is now styled the comet (1862 iii.) of the August meteors, the second (1866 i.) that of the November meteors. The steps by which this curious connection came to be ascertained were many, and were taken in succession by a number of individuals. But the final result was reached by Schiaparelli of Milan, and remains deservedly associated with his name.

The idea prevalent in the eighteenth century as to the nature of shooting stars was that they were mere aerial ignes fatui—inflammable vapours accidentally kindled in our atmosphere. But Halley had already entertained the opinion of their cosmical origin; and Chladni in 1794 formally broached the theory that space is filled with minute circulating atoms, which, drawn by the earth's attraction, and ignited by friction in its gaseous envelope, produce the luminous effects so frequently witnessed.[1197] Acting on his suggestion, Brandes and Benzenberg, two students at the University of Göttingen, began in 1798 to determine the heights of falling stars by simultaneous observations at a distance. They soon found that they move with planetary velocities in the most elevated regions of our atmosphere, and by the ascertainment of this fact laid a foundation of distinct knowledge regarding them. Some of the data collected, however, served only to perplex opinion, and even caused Chladni temporarily to renounce his. Many high authorities, headed by Laplace in 1802, declared for the lunar-volcanic origin of meteorites; but thought on the subject was turbid, and inquiry seemed only to stir up the mud of ignorance. It needed one of those amazing spectacles, at which man assists, no longer in abject terror for his own frail fortunes, but with keen curiosity and the vivid expectation of new knowledge, to bring about a clarification.

On the night of November 12-13, 1833, a tempest of falling stars broke over the earth. North America bore the brunt of its pelting. From the Gulf of Mexico to Halifax, until daylight with some difficulty put an end to the display, the sky was scored in every direction with shining tracks and illuminated with majestic fireballs. At Boston the frequency of meteors was estimated to be about half that of flakes of snow in an average snowstorm. Their numbers, while the first fury of their coming lasted, were quite beyond counting; but as it waned, a reckoning was attempted, from which it was computed, on the basis of that much diminished rate, that 240,000 must have been visible during the nine hours they continued to fall.[1198]