Gore's "Catalogue of Known Variables"[1461] included, in 1884, 190 entries, and the number was augmented to 243 on its revision in 1888.[1462] Chandler's first list of 225 such objects,[1463] published about the same time, received successive expansions in 1893 and 1896,[1464] and finally included 400 entries. A new "Catalogue of Variable Stars," still wider in scope, will shortly be issued by the German Astronomische Gesellschaft. Mr. A. W. Roberts's researches on southern variables[1465] have greatly helped to give precision, while adding to the extent of knowledge in this branch. Dr. Gould held the opinion that most stars fluctuate slightly in brightness through surface-alterations similar to, but on a larger scale than those of the sun; and the solar analogy might be pushed somewhat further. It perhaps affords a clue to much that is perplexing in stellar behaviour. Wolf pointed out in 1852 the striking resemblance in character between curves representing sun-spot frequency and curves representing the changing luminous intensity of many variable stars. There were the same steep ascent to maximum and more gradual decline to minimum, the same irregularities in heights and hollows, and, it may be added, the same tendency to a double maximum, and complexity of superposed periods.[1466] It is impossible to compare the two sets of phenomena thus graphically portrayed without reaching the conclusion that they are of closely related origin. But the correspondence indicated is not, as has often been hastily assumed, between maxima of sun-spots and minima of stellar brightness, but just the reverse. The luminous outbursts, not the obscurations of variable stars, obey a law analogous to that governing the development of spots on the sun. Objects of the kind do not, then, gain light through the closing-up of dusky chasms in their photospheres, but by an actual increase of surface-brilliancy, together with an immense growth of these brilliant formations—prominences and faculæ—which, in the sun, accompany, or are appended to spots. A comparison of light-curves with curves of spot-frequency leaves no doubt on this point, and the strongest corroborative evidence is derived from the emergence of bright lines in the spectra of long-period variables rising to their recurring maxima.

Every kind and degree of variability is exemplified in the heavens. At the bottom of the scales are stars like the sun, of which the lustre is—tried by our instrumental means—sensibly steady. At the other extreme are ranged the astounding apparitions of "new," or "temporary" stars. Within the last thirty-six years eleven of these stellar guests (as the Chinese call them) have presented themselves, and we meet with a twelfth no farther back than April 27, 1848. But of the "new star" in Ophiuchus found by Mr. Hind on that night, little more could be learnt than of the brilliant objects of the same kind observed by Tycho and Kepler. The spectroscope had not then been invented. Let us hear what it had to tell of later arrivals.

About thirty minutes before midnight of May 12, 1866, Mr. John Birmingham of Millbrook, near Tuam, in Ireland, saw with astonishment a bright star of the second magnitude unfamiliarly situated in the constellation of the Northern Crown. Four hours earlier, Schmidt of Athens had been surveying the same part of the heavens, and was able to testify that it was not visible there. That is to say, a few hours, or possibly a few minutes, sufficed to bring about a conflagration, the news of which may have occupied hundreds of years in travelling to us across space. The rays which were its messengers, admitted within the slit of Sir William Huggins's spectroscope, May 16, proved to be of a composition highly significant as to the nature of the catastrophe. The star—which had already declined below the third magnitude—showed what was described as a double spectrum. To the dusky flutings of Secchi's third type four brilliant rays were added.[1467] The chief of these agreed in position with lines of hydrogen; so that the immediate cause of the outburst was inferred to have been the eruption, or ignition, of vast masses of that subtle kind of matter, the universal importance of which throughout the cosmos is one of the most curious facts revealed by the spectroscope.

T Coronæ (as the new star was called) quickly lost its adventitious splendour. Nine days after its discovery it was again invisible to the naked eye. It is now a pale yellow, slightly variable star near the tenth magnitude, and finds a place as such in Argelander's charts.[1468] It was thus obscurely known before it made its sudden leap into notoriety.

The next "temporary," discovered by Dr. Schmidt at Athens, November 24, 1876, could lay no claim to previous recognition even in that modest rank. It was strictly a parvenu. There was no record of its existence until it made its appearance as a star of nearly the third magnitude, in the constellation of the Swan. Its spectrum was examined, December 2, by Cornu at Paris,[1469] and a few days later by Vogel and O. Lohse at Potsdam.[1470] It proved of a closely similar character to that of T Coronæ. A range of bright lines, including those of hydrogen, and probably of helium, stood out from a continuous background impressed with strong absorption. It may be presumed that in reality the gaseous substances, which, by their sudden incandescence, had produced the apparent conflagration, lay comparatively near the surface of the star, while the screen of cooler materials intercepting large portions of its light was situated at a considerable elevation in its atmosphere.

The object, meanwhile, steadily faded. By the end of the year it was of no more than seventh magnitude. After the second week of March, 1877, strengthening twilight combined with the decline of its radiance to arrest further observation. It was resumed, September 2, at Dunecht, with a strange result. Practically the whole of its scanty light (it had then sunk below the tenth magnitude) was perceived to be gathered into a single bright line in the green, and that the most characteristic line of gaseous nebulæ.[1471] The star had, in fact, so far as outward appearance was concerned, become transformed into a planetary nebula, many of which are so minute as to be distinguishable from small stars only by the quality of their radiations. It is now, having sunk to about the fourteenth magnitude,[1472] entirely beyond the reach of spectroscopic scrutiny.

Perhaps none of the marvellous changes witnessed in the heavens has given a more significant hint as to their construction than the stellar blaze kindled in the heart of the great Andromeda nebula some undetermined number of years or centuries before its rays reached the earth in the month of August, 1885. The first published discovery was by Dr. Hartwig at Dorpat on August 31; but it was found to have been already seen, on the 19th, by Mr. Isaac W. Ward of Belfast, and on the 17th by M. Ludovic Gully of Rouen. The negative observations, on the 16th, of Tempel[1473] and Max Wolf, limited very narrowly the epoch of the apparition. Nevertheless, it did not, like most temporaries, attain its maximum brightness all at once. When first detected, it was of the ninth, by September 1 it had risen to the seventh magnitude, from which it so rapidly fell off that in March it touched the limit of visibility (sixteenth magnitude) with the Washington 26-inch. Its light bleached very perceptibly as it faded.[1474] During the earlier stages of its decline, the contrast was striking between the sharply defined, ruddy disc of the star, and the hazy, greenish-white background upon which it was projected,[1475] and with which it was inevitably suggested to be in some sort of physical connection.

Let us consider what evidence was really available on this point. To begin with, the position of the star was not exactly central. It lay sixteen seconds of arc to the south-west of the true nebular nucleus. Its appearance did not then signify a sudden advance of the nebula towards condensation, nor was it attended by any visible change in it save the transient effect of partial effacement through superior brightness.

Equally indecisive information was derived from the spectroscope. To Vogel, Hasselberg, and Young, the light of the "Nova" seemed perfectly continuous; but Huggins caught traces of bright lines on September 2, confirmed on the 9th;[1476] and Copeland succeeded, on September 30, in measuring three bright bands with an acute-angled prism specially constructed for the purpose.[1477] A shimmer of F was suspected, and had also been perceived by Mr. O. T. Sherman of Yale College. Still, the effect was widely different from that of the characteristic blazing spectrum of a temporary star, and prompted the surmise that here, too, a variable might be under scrutiny. The star, however, was certainly so far "new" that its rays, until their sudden accession of strength, were too feeble to affect even our reinforced senses. Not one of the 1,283 small stars recorded in charts of the nebula could be identified with it; and a photograph taken by Dr. Common, August 16, 1884, on which a multitude of stars down to the fifteenth magnitude had imprinted themselves, showed the uniform, soft gradation of nebulous light to be absolutely unbroken by a stellar indication in the spot reserved for the future occupation of the "Nova."[1478]

So far, then, the view that its relation to the nebula was a merely optical one might be justified; but it became altogether untenable when it was found that what was taken to be a chance coincidence had repeated itself within living memory. On the 21st of May, 1860, M. Auwers perceived at Königsberg a seventh magnitude star shining close to the centre of a nebula in Scorpio, numbered 80 in Messier's Catalogue.[1479] Three days earlier it certainly was not there, and three weeks later it had vanished. The effect to Mr. Pogson (who independently discovered the change, May 28)[1480] was as if the nebula had been replaced by a star, so entirely were its dim rays overpowered by the concentrated blaze in their midst. Now, it is simply incredible that two outbursts of so uncommon a character should have accidentally occurred just on the line of sight between us and the central portions of two nebulæ; we must, then, conclude that they showed on these objects because they took place in them. The most favoured explanation is that they were what might be called effects of overcrowding—that some of the numerous small bodies, presumably composing the nebulæ, jostled together, in their intricate circlings, and obtained compensation in heat for their sacrifice of motion. But this is scarcely more than a plausible makeshift of perplexed thought. Mr. W. H. S. Monck, on the other hand, has suggested that new stars appear when dark bodies are rendered luminous by rushing through the gaseous fields of space,[1481] just as meteors kindle in our atmosphere. The idea, which has been revived and elaborated by Dr. Seeliger of Munich,[1482] is ingenious, but was not designed to apply to our present case. Neither of the objects distinguished by the striking variations just described is of gaseous constitution. That in Scorpio appears under high magnifying powers as a "compressed cluster"; that in Andromeda is perhaps, as Sir J. Herschel suggested, "optically nebulous through the smallness of its constituent stars"[1483]—if stars they deserve to be called.