We have now to consider labours of a totally different character from those of Sir William Herschel. Exploration and discovery do not constitute the whole business of astronomy; the less adventurous, though not less arduous, task of gaining a more and more complete mastery over the problems immemorially presented to her, may, on the contrary, be said to form her primary duty. A knowledge of the movements of the heavenly bodies has, from the earliest times, been demanded by the urgent needs of mankind; and science finds its advantage, as in many cases it has taken its origin, in condescension to practical claims. Indeed, to bring such knowledge as near as possible to absolute precision has been defined by no mean authority[58] as the true end of astronomy.
Several causes concurred about the beginning of the last century to give a fresh and powerful impulse to investigations having this end in view. The rapid progress of theory almost compelled a corresponding advance in observation; instrumental improvements rendered such an advance possible; Herschel's discoveries quickened public interest in celestial inquiries; royal, imperial, and grand-ducal patronage widened the scope of individual effort. The heart of the new movement was in Germany. Hitherto the observatory of Flamsteed and Bradley had been the acknowledged centre of practical astronomy; Greenwich observations were the standard of reference all over Europe; and the art of observing prospered in direct proportion to the fidelity with which Greenwich methods were imitated. Dr. Maskelyne, who held the post of Astronomer Royal during forty-six years (from 1765 to 1811), was no unworthy successor to the eminent men who had gone before him. His foundation of the Nautical Almanac (in 1767) alone constitutes a valid title to fame; he introduced at the Observatory the important innovation of the systematic publication of results; and the careful and prolonged series of observations executed by him formed the basis of the improved theories, and corrected tables of the celestial movements, which were rapidly being brought to completion abroad. His catalogue of thirty-six "fundamental" stars was besides excellent in its way, and most serviceable. Yet he was devoid of Bradley's instinct for divining the needs of the future. He was fitted rather to continue a tradition than to found a school. The old ways were dear to him; and, indefatigable as he was, a definite purpose was wanting to compel him, by its exigencies, along the path of progress. Thus, for almost fifty years after Bradley's death, the acquisition of a small achromatic[59] was the only notable change made in the instrumental equipment of the Observatory. The transit, the zenith sector, and the mural quadrant, with which Bradley had done his incomparable work, retained their places long after they had become deteriorated by time and obsolete by the progress of invention; and it was not until the very close of his career that Maskelyne, compelled by Pond's detection of serious errors, ordered a Troughton's circle, which he did not live to employ.
Meanwhile, the heavy national disasters with which Germany was overwhelmed in the early part of the nineteenth century seemed to stimulate rather than impede the intellectual revival already for some years in progress there. Astronomy was amongst the first of the sciences to feel the new impulse. By the efforts of Bode, Olbers, Schröter, and Von Zach, just and elevated ideas on the subject were propagated, intelligence was diffused, and a firm ground prepared for common action in mutual sympathy and disinterested zeal. They received powerful aid through the foundation, in 1804, by a young artillery officer named Von Reichenbach, of an Optical and Mechanical Institute at Munich. Here the work of English instrumental artists was for the first time rivalled, and that of English opticians—when Fraunhofer entered the new establishment—far surpassed. The development given to the refracting telescope by this extraordinary man was indispensable to the progress of that fundamental part of astronomy which consists in the exact determination of the places of the heavenly bodies. Reflectors are brilliant engines of discovery, but they lend themselves with difficulty to the prosaic work of measuring right ascensions and polar distances. A signal improvement in the art of making and working flint-glass thus most opportunely coincided with the rise of a German school of scientific mechanicians, to furnish the instrumental means needed for the reform which was at hand. Of the leader of that reform it is now time to speak.
Friedrich Wilhelm Bessel was born at Minden, in Westphalia, July 22, 1784. A certain taste for figures, coupled with a still stronger distaste for the Latin accidence, directed his inclination and his father's choice towards a mercantile career. In his fifteenth year, accordingly, he entered the house of Kuhlenkamp and Sons, in Bremen, as an apprenticed clerk. He was now thrown completely upon his own resources. From his father, a struggling Government official, heavily weighted with a large family, he was well aware that he had nothing to expect; his dormant faculties were roused by the necessity for self-dependence, and he set himself to push manfully forward along the path that lay before him. The post of supercargo on one of the trading expeditions sent out from the Hanseatic towns to China and the East Indies was the aim of his boyish ambition, for the attainment of which he sought to qualify himself by the industrious acquisition of suitable and useful knowledge. He learned English in two or three months; picked up Spanish with the casual aid of a gunsmith's apprentice; studied the geography of the distant lands which he hoped to visit; collected information as to their climates, inhabitants, products, and the courses of trade. He desired to add some acquaintance with the art (then much neglected) of taking observations at sea; and thus, led on from navigation to astronomy, and from astronomy to mathematics, he groped his way into a new world.
It was characteristic of him that the practical problems of science should have attracted him before his mind was as yet sufficiently matured to feel the charm of its abstract beauties. His first attempt at observation was made with a sextant, rudely constructed under his own directions, and a common clock. Its object was the determination of the longitude of Bremen, and its success, he tells us himself,[60] filled him with a rapture of delight, which, by confirming his tastes, decided his destiny. He now eagerly studied Bode's Jahrbuch and Von Zach's Monatliche Correspondenz, overcoming each difficulty as it arose with the aid of Lalande's Traité d'Astronomie, and supplying, with amazing rapidity, his early deficiency in mathematical training. In two years he was able to attack a problem which would have tasked the patience, if not the skill, of the most experienced astronomer. Amongst the Earl of Egremont's papers Von Zach had discovered Harriot's observations on Halley's comet at its appearance in 1607, and published them as a supplement to Bode's Annual. With an elaborate care inspired by his youthful ardour, though hardly merited by their loose nature, Bessel deduced from them an orbit for that celebrated body, and presented the work to Olbers, whose reputation in cometary researches gave a special fitness to the proffered homage. The benevolent physician-astronomer of Bremen welcomed with surprised delight such a performance emanating from such a source. Fifteen years previously, the French Academy had crowned a similar work; now its equal was produced by a youth of twenty, busily engaged in commercial pursuits, self-taught, and obliged to snatch from sleep the hours devoted to study. The paper was immediately sent to Von Zach for publication, with a note from Olbers explaining the circumstances of its author; and the name of Bessel became the common property of learned Europe.
He had, however, as yet no intention of adopting astronomy as his profession. For two years he continued to work in the counting-house by day, and to pore over the Mécanique Céleste and the Differential Calculus by night. But the post of assistant in Schröter's observatory at Lilienthal having become vacant by the removal of Harding to Göttingen in 1805, Olbers procured for him the offer of it. It was not without a struggle that he resolved to exchange the desk for the telescope. His reputation with his employers was of the highest; he had thoroughly mastered the details of the business, which his keen practical intelligence followed with lively interest; his years of apprenticeship were on the point of expiring, and an immediate, and not unwelcome prospect of comparative affluence lay before him. The love of science, however, prevailed; he chose poverty and the stars, and went to Lilienthal with a salary of a hundred thalers yearly. Looking back over his life's work, Olbers long afterwards declared that the greatest service which he had rendered to astronomy was that of having discerned, directed, and promoted the genius of Bessel.[61]
For four years he continued in Schröter's employment. At the end of that time the Prussian Government chose him to superintend the erection of a new observatory at Königsberg, which after many vexatious delays, caused by the prostrate condition of the country, was finished towards the end of 1813. Königsberg was the first really efficient German observatory. It became, moreover, a centre of improvement, not for Germany alone, but for the whole astronomical world. During two-and-thirty years it was the scene of Bessel's labours, and Bessel's labours had for their aim the reconstruction, on an amended and uniform plan, of the entire science of observation.
A knowledge of the places of the stars is the foundation of astronomy.[62] Their configuration lends to the skies their distinctive features, and marks out the shifting tracks of more mobile objects with relatively fixed, and generally unvarying points of light. A more detailed and accurate acquaintance with the stellar multitude, regarded from a purely uranographical point of view, has accordingly formed at all times a primary object of celestial science, and was, during the last century, cultivated with a zeal and success by which all previous efforts were dwarfed into insignificance. In Lalande's Histoire Céleste, published in 1801, the places of no less than 47,390 stars were given, but in the rough, as it were, and consequently needing laborious processes of calculation to render them available for exact purposes. Piazzi set an example of improved methods of observation, resulting in the publication, in 1803 and 1814, of two catalogues of about 7,600 stars—the second being a revision and enlargement of the first—which for their time were models of what such works should be.[63] Stephen Groombridge at Blackheath was similarly and most beneficially active. But something more was needed than the diligence of individual observers. A systematic reform was called for; and it was this which Bessel undertook and carried through.
Direct observation furnishes only what has been called the "raw material" of the positions of the heavenly bodies.[64] A number of highly complex corrections have to be applied before their mean can be disengaged from their apparent places on the sphere. Of these, the most considerable and familiar is atmospheric refraction, by which objects seem to stand higher in the sky than they in reality do, the effect being evanescent at the zenith, and attaining, by gradations varying with conditions of pressure and temperature, a maximum at the horizon. Moreover, the points to which measurements are referred are themselves in motion, either continually in one direction, or periodically to and fro. The precession of the equinoxes is slowly progressive, or rather retrogressive; the nutation of the pole oscillatory in a period of about eighteen years. Added to which, the non-instantaneous transmission of light, combined with the movement of the earth in its orbit, causes a small annual displacement known as aberration.
Now it is easy to see that any uncertainty in the application of these corrections saps the very foundations of exact astronomy. Extremely minute quantities, it is true, are concerned; but the life and progress of modern celestial science depends upon the sure recognition of extremely minute quantities. In the early years of the nineteenth century, however, no uniform system of "reduction" (so the complete correction of observational results is termed) had been established. Much was left to the individual caprice of observers, who selected for the several "elements" of reduction such values as seemed best to themselves. Hence arose much hurtful confusion, tending to hinder united action and mar the usefulness of laborious researches. For this state of things, Bessel, by the exercise of consummate diligence, sagacity, and patience, provided an entirely satisfactory remedy.