[1626] Annals Cape Obs., iii., Introduction, p. 22.
[1627] Proc. Roy. Soc., vol. xviii., p. 169.
[1628] Astr. Nach., No. 3,456; Observatory, vol. xxi., p. 65; Newcomb, The Stars, p. 80.
[1629] Month. Not., vol. xl., p. 249.
CHAPTER XIII
METHODS OF RESEARCH
Comparing the methods now available for astronomical inquiries with those in use forty years ago, we are at once struck with the fact that they have multiplied. The telescope has been supplemented by the spectroscope and the photographic camera. Now, this really involves a whole world of change. It means that astronomy has left the place where she dwelt apart in rapt union with mathematics, indifferent to all things on earth save only to those mechanical improvements which should aid her to penetrate further into the heavens, and has descended into the forum of human knowledge, at once a suppliant and a patron, alternately invoking help from and promising it to each of the sciences, and patiently waiting upon the advances of all. The science of the heavenly bodies has, in a word, become a branch of terrestrial physics, or rather a higher kind of integration of all their results. It has, however, this leading peculiarity, that the materials for the whole of its inquiries are telescopically furnished. They are such as come very imperfectly, or not at all, within the cognisance of the unarmed eye.
Spectroscopic and photographic apparatus are simply additions to the telescope. They do not supersede or render it of less importance. On the contrary, the efficacy of their action depends primarily upon the optical qualities of the instruments they are attached to. Hence the development, to their fullest extent, of the powers of the telescope is of vital moment to the progress of modern physical astronomy, while the older mathematical astronomy could afford to remain comparatively indifferent to it.
The colossal Rosse reflector still marks, as to size, the ne plus ultra of performance in that line. A mirror four feet in diameter was, however, sent out to Melbourne by the late Thomas Grubb of Dublin in 1870. This is mounted in the Cassegrainian manner, so that the observer looks straight through it towards the object viewed, of which he really sees a twice-reflected image. The dust-laden atmosphere of Melbourne is said to impede very seriously the usefulness of this originally fine instrument.
It may be doubted whether so large a spectrum will ever again be constructed. A new material for the mirrors of reflecting telescopes, proposed by Steinheil in 1856, and independently by Foucault in 1857,[1630] has in a great measure superseded the use of a metallic alloy. This is glass upon which a thin film of silver has been deposited by a chemical process originally invented by Liebig. It gives a peculiarly brilliant reflective surface, throwing back more light than a metallic mirror of the same area, in the proportion of about sixteen to nine. Resilvering, too, involves much less risk and trouble than repolishing a speculum. The first use of this plan on a large scale was in an instrument of thirty-six inches aperture, finished by Calver for Dr. Common in 1879. To its excellent qualities turned to account with rare skill, his triumphs in celestial photography are mainly due. A more daring experiment was the construction and mounting, by Dr. Common himself, of a 5-foot reflector. But the first glass disc ordered from France for the purpose proved radically defective. When figured, polished, and silvered, towards the close of 1888, it gave elliptical instead of circular star-images.[1631] A new one had to be procured, and was ready for astronomical use in 1891. The satisfactory nature of its performance is vouched for by the observations made with it upon Jupiter's new satellite in December, 1892. This instrument, to which a Newtonian form has been given, had no rival in respect of light-concentration at the time when it was built. It has now two—the Paris 50-inch refractor and the Yerkes 5-foot reflector.