The recognition of the second followed as the immediate consequence of the detection of the first. Olbers had made himself so familiar with the positions of the small stars along the track of the long-missing body, that he was at once struck (March 28, 1802) with the presence of an intruder near the spot where he had recently identified Ceres. He at first believed the new-comer to be a variable star usually inconspicuous, but just then at its maximum of brightness; but within two hours he had convinced himself that it was no fixed star, but a rapidly moving object. The aid of Gauss was again invoked, and his prompt calculations showed that this fresh celestial acquaintance (named "Pallas" by Olbers), revolved round the sun at nearly the same mean distance as Ceres, and was beyond question of a strictly analogous character.
This result was perplexing in the extreme. The symmetry and simplicity of the planetary scheme appeared fatally compromised by the admission of many, where room could, according to old-fashioned rules, only be found for one. A daring hypothesis of Olbers's invention provided an exit from the difficulty. He supposed that both Ceres and Pallas were fragments of a primitive trans-Martian planet, blown to pieces in the remote past, either by the action of internal forces or by the impact of a comet; and predicted that many more such fragments would be found to circulate in the same region. He, moreover, pointed out that these numerous orbits, however much they might differ in other respects, must all have a common line of intersection,[206] and that the bodies moving in them must consequently pass, at each revolution, through two opposite points of the heavens, one situated in the Whale, the other in the constellation of the Virgin, where already Pallas had been found and Ceres recaptured. The intimation that fresh discoveries might be expected in those particular regions was singularly justified by the detection of two bodies now known respectively as Juno and Vesta. The first was found near the predicted spot in Cetus by Harding, Schröter's assistant at Lilienthal, September 2, 1804; the second by Olbers himself in Virgo, after three years of persistent scrutiny, March 29, 1807.
The theory of an exploded planet now seemed to have everything in its favour. It required that the mean or average distances of the newly-discovered bodies should be nearly the same, but admitted a wide range of variety in the shapes and positions of their orbits, provided always that they preserved common points of intersection. These conditions were fulfilled with a striking approach to exactness. Three of the four "asteroids" (a designation introduced by Sir. W. Herschel[207]) conformed with very approximate precision to "Bode's law" of distances; they all traversed, in their circuits round the sun, nearly the same parts of Cetus and Virgo; while the eccentricities and inclinations of their paths departed widely from the planetary type—that of Pallas, to take an extreme instance, making with the ecliptic an angle of nearly 35°. The minuteness of these bodies appeared further to strengthen the imputation of a fragmentary character. Herschel estimated the diameter of Ceres at 162, that of Pallas at 147 miles.[208] But these values are now known to be considerably too small. A suspected variability of brightness in some of the asteroids, somewhat hazardously explained as due to the irregularities of figure to be expected in cosmical potsherds (so to speak), was added to the confirmatory evidence.[209] The strong point of the theory, however, lay not in what it explained, but in what it had predicted. It had been twice confirmed by actual exploration of the skies, and had produced, in the recognition of Vesta, the first recorded instance of the premeditated discovery of a heavenly body.
The view not only commended itself to the facile imagination of the unlearned, but received the sanction of the highest scientific authority. The great Lagrange bestowed upon it his analytical imprimatur, showing that the explosive forces required to produce the supposed catastrophe came well within the bounds of possibility; since a velocity of less than twenty times that of a cannon-ball leaving the gun's mouth would have sufficed, according to his calculation, to launch the asteroidal fragments on their respective paths. Indeed, he was disposed to regard the hypothesis of disruption as more generally available than its author had designed it to be, and proposed to supplement with it, as explanatory of the eccentric orbits of comets, the nebular theory of Laplace, thereby obtaining, as he said, "a complete view of the origin of the planetary system more conformable to Nature and mechanical laws than any yet proposed."[210]
Nevertheless the hypothesis of Olbers has not held its ground. It seemed as if all the evidence available for its support had been produced at once and spontaneously, while the unfavourable items were elicited slowly, and, as it were, by cross-examination. A more extended acquaintance with the group of bodies whose peculiarities it was framed to explain has shown them, after all, as recalcitrant to any such explanation. Coincidences at the first view significant and striking have been swamped by contrary examples; and a hasty general conclusion has, by a not uncommon destiny, at last perished under the accumulation of particulars. Moreover, as has been remarked by Professor Newcomb,[211] mutual perturbations would rapidly efface all traces of a common disruptive origin, and the catastrophe, to be perceptible in its effects, should have been comparatively recent.
A new generation of astronomers had arisen before any additions were made to the little family of the minor planets. Piazzi died in 1826, Harding in 1834, Olbers in 1840; all those who had prepared or participated in the first discoveries passed away without witnessing their resumption. In 1830, however, a certain Hencke, ex-postmaster in the Prussian town of Driessen, set himself to watch for new planets, and after fifteen long years his patience was rewarded. The asteroid found by him, December 8, 1845, received the name of Astræa, and his further prosecution of the search resulted, July 1, 1847, in the discovery of Hebe. A few weeks later (August 13), John Russell Hind (1823-1893), after many months' exploration from Mr. Bishop's observatory in the Regent's Park, picked up Iris, and October 18, Flora.[212] The next on the list was Metis, found by Mr. Graham, April 25, 1848, at Markree, in Ireland.[213] At the close of the period to which our attention is at present limited, the number of these small bodies known to astronomy was thirteen; and the course of discovery has since proceeded far more rapidly and with less interruption.
Both in itself and in its consequences the recognition of the minor planets was of the highest importance to science. The traditional ideas regarding the constitution of the solar system were enlarged by the admission of a new class of bodies, strongly contrasted, yet strictly co-ordinate with the old-established planetary order; the profusion of resource, so conspicuous in the living kingdoms of Nature, was seen to prevail no less in the celestial spaces; and some faint preliminary notion was afforded of the indefinite complexity of relations underlying the apparent simplicity of the majestic scheme to which our world belongs. Both theoretical and practical astronomy derived profit from the admission of these apparently insignificant strangers to the rights of citizenship of the solar system. The disturbance of their motions by their giant neighbours afforded a more accurate knowledge of the Jovian mass, which Laplace had taken about 1/50 too small; the anomalous character of their orbits presented geometers with highly stimulating problems in the theory of perturbation; while the exigencies of the first discovery had produced the Theoria Motus, and won Gauss over to the ranks of calculating astronomy. Moreover, the sure prospect of further detections powerfully incited to the exploration of the skies; observers became more numerous and more zealous in view of the prizes held out to them; star-maps were diligently constructed, and the sidereal multitude strewn along the great zodiacal belt acquired a fresh interest when it was perceived that its least conspicuous member might be a planetary shred or projectile in the dignified disguise of a distant sun. Harding's "Celestial Atlas," designed for the special purpose of facilitating asteroidal research, was the first systematic attempt to represent to the eye the telescopic aspect of the heavens. It was while engaged on its construction that the Lilienthal observer successfully intercepted Juno on her passage through the Whale in 1804; whereupon promoted to Göttingen, he there completed, in 1822, the arduous task so opportunely entered upon a score of years previously. Still more important were the great star-maps of the Berlin Academy, undertaken at Bessel's suggestion, with the same object of distinguishing errant from fixed stars, and executed, under Encke's supervision, during the years 1830-59. They have played a noteworthy part in the history of planetary discovery, nor of the minor kind alone.
We have now to recount an event unique in scientific history. The discovery of Neptune has been characterised as the result of a "movement of the age,"[214] and with some justice. It had become necessary to the integrity of planetary theory. Until it was accomplished, the phantom of an unexplained anomaly in the orderly movements of the solar system must have continued to haunt astronomical consciousness. Moreover, it was prepared by many, suggested as possible by not a few, and actually achieved, simultaneously, independently, and completely, by two investigators.
The position of the planet Uranus was recorded as that of a fixed star no less than twenty times between 1690 and the epoch of its final detection by Herschel. But these early observations, far from affording the expected facilities for the calculation of its orbit, proved a source of grievous perplexity. The utmost ingenuity of geometers failed to combine them satisfactorily with the later Uranian places, and it became evident, either that they were widely erroneous, or that the revolving body was wandering from its ancient track. The simplest course was to reject them altogether, and this was done in the new Tables published in 1821 by Alexis Bouvard, the indefatigable computating partner of Laplace. But the trouble was not thus to be got rid of. After a few years fresh irregularities began to appear, and continued to increase until absolutely "intolerable." It may be stated as illustrative of the perfection to which astronomy had been brought, that divergencies regarded as menacing the very foundation of its theories never entered the range of unaided vision. In other words, if the theoretical and the real Uranus had been placed side by side in the sky, they would have seemed, to the sharpest eye, to form a single body.[215]
The idea that these enigmatical disturbances were due to the attraction of an unknown exterior body was a tolerably obvious one; and we accordingly find it suggested in many different quarters. Bouvard himself was perhaps the first to conceive it. He kept the possibility continually in view, and bequeathed to his nephew's diligence the inquiry into its reality when he felt that his own span was drawing to a close; but before any progress had been made with it, he had already (June 7, 1843) "ceased to breathe and to calculate." The Rev. T. J. Hussey actually entertained in 1834 the notion, but found his powers inadequate to the task, of assigning an approximate place to the disturbing body; and Bessel, in 1840, laid his plans for an assault in form upon the Uranian difficulty, the triumphant exit from which fatal illness frustrated his hopes of effecting or even witnessing.