No great comet appeared between the "star" which presided at the birth of Napoleon and the "vintage" comet of 1811. The latter was first described by Flaugergues at Viviers, March 26, 1811; Wisniewski, at Neu-Tscherkask in Southern Russia, caught a final glimpse of it, August 17, 1812. Two disappearances in the solar rays as the earth moved round in its orbit, and two reappearances after conjunction, were included in this unprecedentedly long period of visibility of 510 days. This relative permanence (so far as the inhabitants of Europe were concerned) was due to the high northern latitude attained near perihelion, combined with a certain leisureliness of movement along a path everywhere external to that of the earth. The magnificent luminous train of this body, on October 15, the day of its nearest terrestrial approach, covered an arc of the heavens 23-1/2 degrees in length, corresponding to a real extension of one hundred millions of miles. Its form was described by Sir William Herschel as that of "an inverted hollow cone," and its colour as yellowish, strongly contrasted with the bluish-green tint of the "head," round which it was flung like a transparent veil. The planetary disc of the head, 127,000 miles across, appeared to be composed of strongly-condensed nebulous matter; but somewhat eccentrically situated within it was a star-like nucleus of a reddish tinge, which Herschel presumed to be solid, and ascertained, with his usual care, to have a diameter of 428 miles. From the total absence of phases, as well as from the vivacity of its radiance, he confidently inferred that its light was not borrowed, but inherent.[269]
This remarkable apparition formed the subject of a memoir by Olbers,[270] the striking yet steadily reasoned out suggestions contained in which there was at that time no means of following up with profit. Only of late has the "electrical theory," of which Zöllner[271] regarded Olbers as the founder, assumed a definite and measurable form, capable of being tested by the touchstone of fact, as knowledge makes its slow inroads on the fundamental mystery of the physical universe.
The paraboloidal shape of the bright envelope separated by a dark interval from the head of the great comet of 1811, and constituting, as it were, the root of its tail, seemed to the astronomer of Bremen to reveal the presence of a double repulsion; the expelled vapours accumulating where the two forces, solar and cometary, balanced each other, and being then swept backwards in a huge train. He accordingly distinguished three classes of these bodies:—First, comets which develop no matter subject to solar repulsion. These have no tails, and are probably mere nebulosities, without solid nuclei. Secondly, comets which are acted upon by solar repulsion only, and consequently throw out no emanations towards the sun. Of this kind was a bright comet visible in 1807.[272] Thirdly, comets like that of 1811, giving evidence of action of both kinds. These are distinguished by a dark hoop encompassing the head and dividing it from the luminous envelope, as well as by an obscure caudal axis, resulting from the hollow, cone-like structure of the tail.
Again, the ingenious view subsequently propounded by M. Brédikhine as to the connection between the form of these appendages and the kind of matter composing them, was very clearly anticipated by Olbers. The amount of tail-curvature, he pointed out, depends in each case upon the proportion borne by the velocity of the ascending particles to that of the comet in its orbit; the swifter the outrush, the straighter the resulting tail. But the velocity of the ascending particles varies with the energy of their repulsion by the sun, and this again, it may be presumed, with their quality. Thus multiple tails are developed when the same comet throws off, as it approaches perihelion, specifically distinct substances. The long, straight ray which proceeded from the comet of 1807, for example, was doubtless made up of particles subject to a much more vigorous solar repulsion than those formed into the shorter curved emanation issuing from it nearly in the same direction. In the comet of 1811 he calculated that the particles expelled from the head travelled to the remote extremity of the tail in eleven minutes, indicating by this enormous rapidity of movement (comparable to that of the transmission of light) the action of a force much more powerful than the opposing one of gravity. The not uncommon phenomena of multiple envelopes, on the other hand, he explained as due to the varying amounts of repulsion exercised by the nucleus itself on the different kinds of matter developed from it.
The movements and perturbations of the comet of 1811 were no less profoundly studied by Argelander than its physical constitution by Olbers. The orbit which he assigned to it is of such vast dimensions as to require no less that 3,065 years for the completion of its circuit; and to carry the body describing it at each revolution to fourteen times the distance from the sun of the frigid Neptune. Thus, when it last visited our neighbourhood, Achilles may have gazed on its imposing train as he lay on the sands all night bewailing the loss of Patroclus; and when it returns, it will perhaps be to shine upon the ruins of empires and civilizations still deep buried among the secrets of the coming time.[273]
On the 26th of June, 1819, while the head of a comet passed across the face of the sun, the earth was in all probability involved in its tail. But of this remarkable double event nothing was known until more than a month later, when the fact of its past occurrence emerged from the calculations of Olbers.[274] Nor had the comet itself been generally visible previous to the first days of July. Several observers, however, on the publication of these results, brought forward accounts of singular spots perceived by them upon the sun at the time of the transit, and an original drawing of one of them, by Pastorff of Buchholtz, has been preserved. This undoubtedly authentic delineation[275] represents a round nebulous object with a bright spot in the centre, of decidedly cometary aspect, and not in the least like an ordinary solar "macula." Mr. Hind,[276] nevertheless, showed its position on the sun to be irreconcilable with that which the comet must have occupied; and Mr. Ranyard's discovery of a similar smaller drawing by the same author, dated May 26, 1828,[277] reduces to evanescence the probability of its connection with that body. Indeed, recent experience renders very doubtful the possibility of such an observation.
The return of Halley's comet in 1835 was looked forward to as an opportunity for testing the truth of floating cometary theories, and did not altogether disappoint expectation. As early as 1817, its movements and disturbances since 1759 were proposed by the Turin Academy of Sciences as the subject of a prize ultimately awarded to Baron Damoiseau. Pontécoulant was adjudged a similar distinction by the Paris Academy in 1829; while Rosenberger's calculations were rewarded with the gold medal of the Royal Astronomical Society.[278]
They were verified by the detection at Rome, August 6, 1835, of a nearly circular misty object not far from the predicted place of the comet. It was not, however, until the middle of September that it began to throw out a tail, which by the 15th of October had attained a length of about 24 degrees (on the 19th, at Madras, it extended to fully 30),[279] the head showing to the naked eye as a reddish star rather brighter than Aldebaran or Antares.[280] Some curious phenomena accompanied the process of tail-formation. An outrush of luminous matter, resembling in shape a partially opened fan, issued from the nucleus towards the sun, and at a certain point, like smoke driven before a high wind, was vehemently swept backwards in a prolonged train. The appearance of the comet at this time was compared by Bessel,[281] who watched it with minute attention, to that of a blazing rocket. He made the singular observation that this fan of light, which seemed the source of supply for the tail, oscillated like a pendulum to and fro across a line joining the sun and nucleus, in a period of 4-3/5 days; and he was unable to escape from the conclusion[282] that a repulsive force, about twice as powerful as the attractive force of gravity, was concerned in the production of these remarkable effects. Nor did he hesitate to recur to the analogy of magnetic polarity, or to declare, still more emphatically than Olbers, "the emission of the tail to be a purely electrical phenomenon."[283]
The transformations undergone by this body were almost as strange and complete as those which affected the brigands in Dante's Inferno. When first seen, it wore the aspect of a nebula; later it put on the distinctive garb of a comet; it next appeared as a star; finally, it dilated, first in a spherical, then in a paraboloidal form, until May 5, 1836, when it vanished from Herschel's observation at Feldhausen as if by melting into adjacent space from the excessive diffusion of its light. A very uncommon circumstance in its development was that it lost all trace of tail previous to its arrival at perihelion on the 16th of November. Nor did it begin to recover its elongated shape for more than two months afterwards. On the 23rd of January, Boguslawski perceived it as a star of the sixth magnitude, without measurable disc.[284] Only two nights later, Maclear, director of the Cape Observatory, found the head to be 131 seconds across.[285] And so rapidly did the augmentation of size progress, that Sir John Herschel estimated the actual bulk of this singular object to have increased forty-fold in the ensuing week. "I can hardly doubt," he remarks, "that the comet was fairly evaporated in perihelio by the heat, and resolved into transparent vapour, and is now in process of rapid condensation and re-precipitation on the nucleus."[286] A plausible, but no longer admissible, interpretation of this still unexplained phenomenon. The next return of this body, which will be considerably accelerated by Jupiter's influence, is expected to take place in 1910.[287]