Partially and inconclusively at first this was done. The "fixed lines" (as they were called) of the solar spectrum took up the position of a standing problem, to the solution of which no approach seemed possible. Conjectures as to their origin were indeed rife. An explanation put forward by Zantedeschi[382] and others, and dubiously favoured by Sir David Brewster and Dr. J. H. Gladstone,[383] was that they resulted from "interference"—that is, a destruction of the motion producing in our eyes the sensation of light, by the superposition of two light-waves in such a manner that the crests of one exactly fill up the hollows of the other. This effect was supposed to be brought about by imperfections in the optical apparatus employed.
A more plausible view was that the atmosphere of the earth was the agent by which sunlight was deprived of its missing beams. For a few of them this is actually the case. Brewster found in 1832 that certain dark lines, which were invisible when the sun stood high in the heavens, became increasingly conspicuous as he approached the horizon.[384] These are the well-known "atmospheric lines;" but the immense majority of their companions in the spectrum remain quite unaffected by the thickness of the stratum of air traversed by the sunlight containing them. They are then obviously due to another cause.
There remained the true interpretation—absorption in the sun's atmosphere; and this, too, was extensively canvassed. But a remarkable observation made by Professor Forbes of Edinburgh[385] on the occasion of the annular eclipse of May 15, 1836, appeared to throw discredit upon it. If the problematical dark lines were really occasioned by the stoppage of certain rays through the action of a vaporous envelope surrounding the sun, they ought, it seemed, to be strongest in light proceeding from his edges, which, cutting that envelope obliquely, passed through a much greater depth of it. But the circle of light left by the interposing moon, and of course derived entirely from the rim of the solar disc, yielded to Forbes's examination precisely the same spectrum as light coming from its central parts. This circumstance helped to baffle inquirers, already sufficiently perplexed. It still remains an anomaly, of which no satisfactory explanation has been offered.
Convincing evidence as to the true nature of the solar lines was however at length, in the autumn of 1859, brought forward at Heidelburg. Kirchhoff's experimentum crucis in the matter was a very simple one. He threw bright sunshine across a space occupied by vapour of sodium, and perceived with astonishment that the dark Fraunhofer line D, instead of being effaced by flame giving a luminous ray of the same refrangibility, was deepened and thickened by the superposition.
He tried the same experiment, substituting for sunbeams light from a Drummond lamp, and with similar result. A dark furrow, corresponding in every respect to the solar D-line, was instantly seen to interrupt the otherwise unbroken radiance of its spectrum. The inference was irresistible, that the effect thus produced artificially was brought about naturally in the same way, and that sodium formed an ingredient in the glowing atmosphere of the sun.[386] This first discovery was quickly followed up by the identification of numerous bright rays in the spectra of other metallic bodies with others of the hitherto mysterious Fraunhofer lines. Kirchhoff was thus led to the conclusion that (besides sodium) iron, magnesium, calcium, and chromium, are certainly solar constituents, and that copper, zinc, barium, and nickel are also present, though in smaller quantities.[387] As to cobalt, he hesitated to pronounce, but its existence in the sun has since been established.
These memorable results were founded upon a general principle first enunciated by Kirchhoff in a communication to the Berlin Academy, December 15, 1859, and afterwards more fully developed by him.[388] It may be expressed as follows: Substances of every kind are opaque to the precise rays which they emit at the same temperature; that is to say, they stop the kinds of light or heat which they are then actually in a condition to radiate. But it does not follow that cool bodies absorb the rays which they would give out if sufficiently heated. Hydrogen at ordinary temperatures, for instance, is almost perfectly transparent, but if raised to the glowing point—as by the passage of electricity—it then becomes capable of arresting, and at the same time of displaying in its own spectrum light of four distinct colours.
This principle is fundamental to solar chemistry. It gives the key to the hieroglyphics of the Fraunhofer lines. The identical characters which are written bright in terrestrial spectra are written dark in the unrolled sheaf of sun-rays; the meaning remains unchanged. It must, however, be remembered that they are only relatively dark. The substances stopping those particular tints in the neighbourhood of the sun are at the same time vividly glowing with the very same. Remove the dazzling solar background, by contrast with which they show as obscure, and they will be seen, and, at critical moments, actually have been seen, in all their native splendour. It is because the atmosphere of the sun is cooler than the globe it envelops that the different kinds of vapour constituting that atmosphere take more than they give, absorb more light than they are capable of emitting; raise them to the same temperature as the sun itself, and their powers of emission and absorption being brought exactly to the same level, the thousands of dusky rays in the solar spectrum will be at once obliterated.
The establishment of the terrestrial science of spectrum analysis was due, as we have seen, equally to Kirchhoff and Bunsen, but its celestial application to Kirchhoff alone. He effected this object of the aspirations, more or less dim, of many other thinkers and workers, by the union of two separate, though closely related lines of research—the study of the different kinds of light emitted by various bodies, and the study of the different kinds of light absorbed by them. The latter branch appears to have been first entered upon by Dr. Thomas Young in 1803;[389] it was pursued by the younger Herschel,[390] by William Allen Miller, Brewster, and Gladstone. Brewster indeed made, in 1833,[391] a formal attempt to found what might be called an inverse system of analysis with the prism based upon absorption; and his efforts were repeated, just a quarter of a century later, by Gladstone.[392] But no general point of view was attained; nor, it may be added, was it by this path attainable.
Kirchhoff's map of the solar spectrum, drawn to scale with exquisite accuracy, and printed in three shades of ink to convey the graduated obscurity of the lines, was published in the Transactions of the Berlin Academy for 1861 and 1862.[393] Representations of the principal lines belonging to various elementary bodies formed, as it were, a series of marginal notes accompanying the great solar scroll, enabling the veriest tiro in the new science to decipher its meaning at a glance. Where the dark solar and bright metallic rays agreed in position, it might safely be inferred that the metal emitting them was a solar constituent; and such coincidences were numerous. In the case of iron alone, no less than sixty occurred in one-half of the spectral area, rendering the chances[394] absolutely overwhelming against mere casual conjunction. The preparation of this elaborate picture proved so trying to the eyes that Kirchhoff was compelled by failing vision to resign the latter half of the task to his pupil Hofmann. The complete map measured nearly eight feet in length.
The conclusions reached by Kirchhoff were no sooner announced than they took their place, with scarcely a dissenting voice, among the established truths of science. The broad result, that the dark lines in the spectrum of the sun afford an index to its chemical composition no less reliable than any of the tests used in the laboratory, was equally captivating to the imagination of the vulgar, and authentic in the judgment of the learned; and, like all genuine advances in the knowledge of Nature, it stimulated curiosity far more than it gratified it. Now the history of how discoveries were missed is often quite as instructive as the history of how they were made; it may then be worth while to expend a few words on the thoughts and trials by which, in the present case, the actual event was heralded.