Changing the form of this table, we find that,—

For the first
10 turns the average value of D′ is 38.155
20 turns 38.153
30 turns 38.152
40 turns 38.151
50 turns 38.149
60 turns 38.148
70 turns 38.146
80 turns 38.144
90 turns 38.142
100 turns 38.140
110 turns 38.138
120 turns 38.135
130 turns 38.132
140 turns 38.130

On comparing the scale with the standard meter, the temperature being 16°.5 C., 140 divisions were found to = 139.462mm. This multiplied by (1 + .0000188 × 16.5) = 139.505mm.

One hundred and forty divisions were found to be equal to 140.022 turns of the screw, whence 140 turns of the screw = 139.483mm, or 1 turn of the screw = 0.996305mm.

This is the average value of one turn in 140.

But the average value of D, for 140 turns is, from the preceding table, 38.130.

Therefore, the true value of D, is 38.130 × .996305mm, and the average value of one turn for 10, 20, 30, etc., turns, is found by dividing 38.130 × .996305 by the values of D;, given in the table.

This gives the value of a turn—

mm.
For the first 10 turns 0.99570
20 turns 0.99570
30 turns 0.99573
40 turns 0.99577
50 turns 0.99580
60 turns 0.99583
70 turns 0.99589
80 turns 0.99596
90 turns 0.99601
100 turns 0.99606
110 turns 0.99612
120 turns 0.99618
130 turns 0.99625
140 turns 0.99630

Note.—The micrometer has been sent to Professor Mayer, of Hoboken, to test the screw again, and to find its value. The steel tape has been sent to Professor Rogers, of Cambridge, to find its length again. (See page 145.)