In mathematical terms the search for the field equations amounts to ascertaining the simplest generally covariant differential equations to which the gravitational potentials

can be subjected. By definition these equations should not contain higher derivatives of

with respect to

than the second, and these only linearly, which condition reveals these equations to be a logical transfer of the Poisson field equation of the Newtonian theory of gravity to the general theory of relativity.

The considerations mentioned led to the theory of gravity which yields the Newtonian theory as a first approximation and furthermore it yields the motion of the perihelion of Mercury, the deflection of light by the sun, and the red shift of spectral lines in agreement with experience.[2]

To complete the basis of the general theory of relativity, the electromagnetic field must still be introduced into it which, according to our present conviction, is also the material from which we must build up the elementary structures of matter. The Maxwellian field equations can readily be adopted into the general theory of relativity. This is a completely unambiguous adoption provided it is assumed that the equations contain no differential quotients of