For this reason non-rigid reference-bodies are used, which are as a whole not only moving in any way whatsoever, but which also suffer alterations in form ad lib. during their motion. Clocks, for which the law of motion is of any kind, however irregular, serve for the definition of time. We have to imagine each of these clocks fixed at a point on the non-rigid reference-body. These clocks satisfy only the one condition, that the "readings" which are observed simultaneously on adjacent clocks (in space) differ from each other by an indefinitely small amount. This non-rigid reference-body, which might appropriately be termed a "reference-mollusk," is in the main equivalent to a Gaussian four-dimensional co-ordinate system chosen arbitrarily. That which gives the "mollusk" a certain comprehensibleness as compared with the Gauss co-ordinate system is the (really unjustified) formal retention of the separate existence of the space co-ordinates as opposed to the time co-ordinate. Every point on the mollusk is treated as a space-point, and every material point which is at rest relatively to it as at rest, so long as the mollusk is considered as reference-body. The general principle of relativity requires that all these mollusks can be used as reference-bodies with equal right and equal success in the formulation of the general laws of nature; the laws themselves must be quite independent of the choice of mollusk.

The great power possessed by the general principle of relativity lies in the comprehensive limitation which is imposed on the laws of nature in consequence of what we have seen above.

XXIX
THE SOLUTION OF THE PROBLEM OF GRAVITATION ON THE BASIS OF THE GENERAL PRINCIPLE OF RELATIVITY

IF the reader has followed all our previous considerations, he will have no further difficulty in understanding the methods leading to the solution of the problem of gravitation.

We start off from a consideration of a Galileian domain, i.e. a domain in which there is no gravitational field relative to the Galileian reference-body

. The behaviour of measuring-rods and clocks with reference to

is known from the special theory of relativity, likewise the behaviour of "isolated" material points; the latter move uniformly and in straight lines.

Now let us refer this domain to a random Gauss co-ordinate system or to a "mollusk" as reference-body