I attach special importance to the view of geometry which I have just set forth, because without it I should have been unable to formulate the theory of relativity. Without it the following reflection would have been impossible:—In a system of reference rotating relatively to an inert system, the laws of disposition of rigid bodies do not correspond to the rules of Euclidean geometry on account of the Lorentz contraction; thus if we admit non-inert systems we must abandon Euclidean geometry. The decisive step in the transition to general co-variant equations would certainly not have been taken if the above interpretation had not served as a stepping-stone. If we deny the relation between the body of axiomatic Euclidean geometry and the practically-rigid body of reality, we readily arrive at the following view, which was entertained by that acute and profound thinker, H. Poincaré:—Euclidean geometry is distinguished above all other imaginable axiomatic geometries by its simplicity. Now since axiomatic geometry by itself contains no assertions as to the reality which can be experienced, but can do so only in combination with physical laws, it should be possible and reasonable—whatever may be the nature of reality—to retain Euclidean geometry. For if contradictions between theory and experience manifest themselves, we should rather decide to change physical laws than to change axiomatic Euclidean geometry. If we deny the relation between the practically-rigid body and geometry, we shall indeed not easily free ourselves from the convention that Euclidean geometry is to be retained as the simplest. Why is the equivalence of the practically-rigid body and the body of geometry—which suggests itself so readily—denied by Poincaré and other investigators? Simply because under closer inspection the real solid bodies in nature are not rigid, because their geometrical behaviour, that is, their possibilities of relative disposition, depend upon temperature, external forces, etc. Thus the original, immediate relation between geometry and physical reality appears destroyed, and we feel impelled toward the following more general view, which characterizes Poincaré’s standpoint. Geometry (G) predicates nothing about the relations of real things, but only geometry together with the purport (P) of physical laws can do so. Using symbols, we may say that only the sum of (G) + (P) is subject to the control of experience. Thus (G) may be chosen arbitrarily, and also parts of (P); all these laws are conventions. All that is necessary to avoid contradictions is to choose the remainder of (P) so that (G) and the whole of (P) are together in accord with experience. Envisaged in this way, axiomatic geometry and the part of natural law which has been given a conventional status appear as epistemologically equivalent.

Sub specie aeterni Poincaré, in my opinion, is right. The idea of the measuring-rod and the idea of the clock co-ordinated with it in the theory of relativity do not find their exact correspondence in the real world. It is also clear that the solid body and the clock do not in the conceptual edifice of physics play the part of irreducible elements, but that of composite structures, which may not play any independent part in theoretical physics. But it is my conviction that in the present stage of development of theoretical physics these ideas must still be employed as independent ideas; for we are still far from possessing such certain knowledge of theoretical principles as to be able to give exact theoretical constructions of solid bodies and clocks.

Further, as to the objection that there are no really rigid bodies in nature, and that therefore the properties predicated of rigid bodies do not apply to physical reality,—this objection is by no means so radical as might appear from a hasty examination. For it is not a difficult task to determine the physical state of a measuring-rod so accurately that its behaviour relatively to other measuring-bodies shall be sufficiently free from ambiguity to allow it to be substituted for the “rigid” body. It is to measuring-bodies of this kind that statements as to rigid bodies must be referred.

All practical geometry is based upon a principle which is accessible to experience, and which we will now try to realise. We will call that which is enclosed between two boundaries, marked upon a practically-rigid body, a tract. We imagine two practically-rigid bodies, each with a tract marked out on it. These two tracts are said to be “equal to one another” if the boundaries of the one tract can be brought to coincide permanently with the boundaries of the other. We now assume that:

If two tracts are found to be equal once and anywhere, they are equal always and everywhere.

Not only the practical geometry of Euclid, but also its nearest generalisation, the practical geometry of Riemann, and therewith the general theory of relativity, rest upon this assumption. Of the experimental reasons which warrant this assumption I will mention only one. The phenomenon of the propagation of light in empty space assigns a tract, namely, the appropriate path of light, to each interval of local time, and conversely. Thence it follows that the above assumption for tracts must also hold good for intervals of clock-time in the theory of relativity. Consequently it may be formulated as follows:—If two ideal clocks are going at the same rate at any time and at any place (being then in immediate proximity to each other), they will always go at the same rate, no matter where and when they are again compared with each other at one place.—If this law were not valid for real clocks, the proper frequencies for the separate atoms of the same chemical element would not be in such exact agreement as experience demonstrates. The existence of sharp spectral lines is a convincing experimental proof of the above-mentioned principle of practical geometry. This is the ultimate foundation in fact which enables us to speak with meaning of the mensuration, in Riemann’s sense of the word, of the four-dimensional continuum of space-time.

The question whether the structure of this continuum is Euclidean, or in accordance with Riemann’s general scheme, or otherwise, is, according to the view which is here being advocated, properly speaking a physical question which must be answered by experience, and not a question of a mere convention to be selected on practical grounds. Riemann’s geometry will be the right thing if the laws of disposition of practically-rigid bodies are transformable into those of the bodies of Euclid’s geometry with an exactitude which increases in proportion as the dimensions of the part of space-time under consideration are diminished.

It is true that this proposed physical interpretation of geometry breaks down when applied immediately to spaces of sub-molecular order of magnitude. But nevertheless, even in questions as to the constitution of elementary particles, it retains part of its importance. For even when it is a question of describing the electrical elementary particles constituting matter, the attempt may still be made to ascribe physical importance to those ideas of fields which have been physically defined for the purpose of describing the geometrical behaviour of bodies which are large as compared with the molecule. Success alone can decide as to the justification of such an attempt, which postulates physical reality for the fundamental principles of Riemann’s geometry outside of the domain of their physical definitions. It might possibly turn out that this extrapolation has no better warrant than the extrapolation of the idea of temperature to parts of a body of molecular order of magnitude.

It appears less problematical to extend the ideas of practical geometry to spaces of cosmic order of magnitude. It might, of course, be objected that a construction composed of solid rods departs more and more from ideal rigidity in proportion as its spatial extent becomes greater. But it will hardly be possible, I think, to assign fundamental significance to this objection. Therefore the question whether the universe is spatially finite or not seems to me decidedly a pregnant question in the sense of practical geometry. I do not even consider it impossible that this question will be answered before long by astronomy. Let us call to mind what the general theory of relativity teaches in this respect. It offers two possibilities:—

1. The universe is spatially infinite. This can be so only if the average spatial density of the matter in universal space, concentrated in the stars, vanishes, i.e. if the ratio of the total mass of the stars to the magnitude of the space through which they are scattered approximates indefinitely to the value zero when the spaces taken into consideration are constantly greater and greater.